12,333 research outputs found

    Kruiden voor kippen?

    Get PDF
    In de biologische pluimveesector worden regelmatig kruidenmiddelen gebruikt, en ook in de reguliere pluimveehouderij worden steeds meer producten op basis van kruiden toegepast. Wat zijn dat voor middelen en wat kan hiervan worden verwacht? Welk product te kiezen uit het ruime aanbod? In dit BioKennis bericht vindt u de actuele stand van zaken en nieuwe ontwikkelingen op dit gebie

    The Locations of Gamma-Ray Bursts Measured by COMPTEL

    Get PDF
    The COMPTEL instrument on the Compton Gamma Ray Observatory is used to measure the locations of gamma-ray bursts through direct imaging of MeV photons. In a comprehensive search, we have detected and localized 29 bursts observed between 1991 April 19 and 1995 May 31. The average location accuracy of these events is 1.25\arcdeg (1σ\sigma), including a systematic error of \sim0.5\arcdeg, which is verified through comparison with Interplanetary Network (IPN) timing annuli. The combination of COMPTEL and IPN measurements results in locations for 26 of the bursts with an average ``error box'' area of only ∌\sim0.3 deg2^2 (1σ\sigma). We find that the angular distribution of COMPTEL burst locations is consistent with large-scale isotropy and that there is no statistically significant evidence of small-angle auto-correlations. We conclude that there is no compelling evidence for burst repetition since no more than two of the events (or ∌\sim7% of the 29 bursts) could possibly have come from the same source. We also find that there is no significant correlation between the burst locations and either Abell clusters of galaxies or radio-quiet quasars. Agreement between individual COMPTEL locations and IPN annuli places a lower limit of ∌\sim100~AU (95% confidence) on the distance to the stronger bursts.Comment: Accepted for publication in the Astrophysical Journal, 1998 Jan. 1, Vol. 492. 33 pages, 9 figures, 5 table

    Spectra of a recent bright burst measured by CGRO-COMPTEL: GRB 990123

    Get PDF
    CGRO-COMPTEL measures gamma-ray burst positions, time-histories and spectra in the 0.1–30 MeV energy range, in both imaging “telescope” and single detector “burst spectroscopy” mode. GRB 990123, one of the most recent bright bursts seen by COMPTEL, was caught in the optical while the gamma-ray emission was ongoing. The burst spectral shape can be characterized by a peak in Μ−FÎœ just below 1 MeV and a power-law tail above(photon index∌−2.4,) and flattening below. There is also spectral evolution by downward movement of the peak and/or softening of the power laws. We present light-curves, time resolved spectra and an image map for this burst

    First results of the BATSE/COMPTEL/NMSU rapid burst response campaign

    Get PDF
    The Imaging Compton Telescope (COMPTEL) on board the Compton Gamma Ray Observatory regularly observes gamma‐ray bursts which occur inside the instrument’s ∌1 sr field‐of‐view. COMPTEL images bursts in the 0.75–30 MeV energy range with a typical location accuracy of 1–3 degrees, depending on burst strength, position, duration, and spectrum. COMPTEL’s imaging capability has been exploited in order to search for fading gamma‐ray burst counterparts at other wavelengths through the establishment of a BATSE/COMPTEL/NMSU rapid burst response campaign. This campaign utilizes near real‐time identification and preliminary burst location by BATSE, accelerated COMPTEL imaging, and a world‐wide network of observers to search COMPTEL error boxes as quickly as possible. Timely, deep searches for lingering counterpart emission of several bursts per year are the realized goal of this campaign. During its first year of operation, the rapid response program has been successfully applied to two strong bursts: GRB 930131 and GRB 930309. These bursts were imaged in record time only hours after their occurrence. Subsequently, several observations were made at radio and optical observatories world‐wide

    Bomen voor Buitenkippen

    Get PDF
    Deze brochure is het eindproduct van praktijknetwerk ‘Bomen voor Buitenkippen’ (2012-2015). Samen met pluimveehouders is onderzocht hoe je met beplanting de uitloop zo goed mogelijk kunt inrichten. We hebben de volgende aspecten meegenomen: beschutting voor de kippen, opbrengst in de vorm van fruit, brandstof of strooisel, verspreiding van de kippen en daarmee ook hun mest, weren van watervogels en landschappelijke waarde. Pluimveehouders hebben fruitbomen, miscanthus of wilgen aangeplant. De wilgen vanuit het project ‘Kiplekker onder de wilgen’ van Probos. De ervaringen met al deze soorten beplanting vormen de basis van deze brochure

    The prompt energy release of gamma-ray bursts using a cosmological k-correction

    Full text link
    The fluences of gamma-ray bursts (GRBs) are measured with a variety of instruments in different detector energy ranges. A detailed comparison of the implied energy releases of the GRB sample requires, then, an accurate accounting of this diversity in fluence measurements which properly corrects for the redshifting of GRB spectra. Here, we develop a methodology to ``k-correct'' the implied prompt energy release of a GRB to a fixed co-moving bandpass. This allows us to homogenize the prompt energy release of 17 cosmological GRBs (using published redshifts, fluences, and spectra) to two common co-moving bandpasses: 20-2000 keV and 0.1 keV-10 MeV (``bolometric''). While the overall distribution of GRB energy releases does not change significantly by using a k-correction, we show that uncorrected energy estimates systematically undercounts the bolometric energy by ~5% to 600%, depending on the particular GRB. We find that the median bolometric isotropic-equivalent prompt energy release is 2.2 x 10^{53} erg with an r.m.s. scatter of 0.80 dex. The typical estimated uncertainty on a given k-corrected energy measurement is ~20%.Comment: Accepted to the Astronomical Journal. 21 pages (LaTeX) and 4 figure

    MeV measurements of gamma-ray bursts by CGRO-COMPTEL

    Get PDF
    Since the launch of the Compton Gamma-Ray Observatory in April 1991, the imaging COMPTEL telescope has accumulated positions and 0.75–30 MeV spectra of more than thirty gamma-ray bursts within its ∌π sr field of view. In an ongoing collaboration with BACODINE/GCN, COMPTEL positions are relayed to a global network of multiwavelength observers in near real time (∌10 minutes). Here we summarize the MeV properties, and present spatial, spectral, and temporal data for the latest of these events, GRB 970807. In concurrence with earlier SMM and current BATSE, OSSE, and EGRET measurements, COMPTEL data add to the accumulating evidence that GRB spectra do seem to have a characteristic shape: a peak (inE2F(E) ) around several hundred keV; and a power law above (spectral index 1.5–3.5) extending beyond the COMPTEL energy range

    The angular distribution of COMPTEL Gamma-Ray bursts

    Get PDF
    The superior burst location capability of the COMPTEL instrument aboard the Compton Gamma-Ray Observatory allows us to study the small-scale angular distribution of burst sources with good sensitivity even though the number of burst detections is small. We accumulate four years (April 1991–April 1995) of observations to form a catalog of 27 burst locations whose mean 1σ uncertainty is ∌1°. We find that the COMPTEL bursts are consistent with an isotropic distribution of sources, yet the spatial coincidence of two of the bursts within COMPTEL’s angular resolution indicates the possibility of repetition. This possibility is studied using the two-point angular correlation function and the nearest neighbor statistic. Model dependent upper limits on the fraction of repeating sources are derived

    COMPTEL measurements of MeV gamma-ray burst spectra

    Get PDF
    We present results from the on-going spectral analysis of gamma-ray bursts measured by the COMPTEL instrument in its main Compton “Telescope” observing mode (0.75–30 MeV). Thus far, 18 bursts have been analyzed from three years (April 1991–April 1994) of observations. The time-averaged spectra of these events above 1 MeV are all consistent with a simple power law model with spectral index in the range 1.5–3.5. Exponential, thermal bremsstrahlung and thermal synchrotron models are statistically inconsistent with the burst sample, although they can adequately describe some of the individual burst spectra. We find good agreement between burst spectra measured simultaneously by BATSE, COMPTEL and EGRET, which typically show a spectral transition or “break” in the BATSE energy range around a few hundred keV followed by simple power law emission extending to hundreds of MeV. However, the temporal relation between MeV and GeV (e.g., as measured by EGRET) burst emission is still unclear. Measurement of rapid variability at MeV energies in the stronger bursts provides evidence that either the sources are nearby (within the Galaxy) or the gamma-ray emission is relativistically beamed
    • 

    corecore