1,439 research outputs found

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    Mobile app recommendations using deep learning and big data

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMRecommender systems were first introduced to solve information overload problems in enterprises. Over the last decades, recommender systems have found applications in several major websites related to e-commerce, music and video streaming, travel and movie sites, social media and mobile app stores. Several methods have been proposed over the years to build recommender systems. The most popular approaches are based on collaborative filtering techniques, which leverage the similarities between consumer tastes. But the current state of the art in recommender systems is deep-learning methods, which can leverage not only item consumption data but also content, context, and user attributes. Mobile app stores generate data with Big Data properties from app consumption data, behavioral, geographic, demographic, social network and user-generated content data, which includes reviews, comments and search queries. In this dissertation, we propose a deep-learning architecture for recommender systems in mobile app stores that leverage most of these data sources. We analyze three issues related to the impact of the data sources, the impact of embedding layer pretraining and the efficiency of using Kernel methods to improve app scoring at a Big Data scale. An experiment is conducted on a Portuguese Android app store. Results suggest that models can be improved by combining structured and unstructured data. The results also suggest that embedding layer pretraining is essential to obtain good results. Some evidence is provided showing that Kernel-based methods might not be efficient when deployed in Big Data contexts

    TRECVID 2004 - an overview

    Get PDF

    Service Failure Complaints Identification in Social Media: A Text Classification Approach

    Get PDF
    The emergence of social media has brought up plenty of platforms where dissatisfied customers can share their service encounter experiences. Those customers’ feedbacks have been widely recognized as valuable information sources for improving service quality. Due to the sparse distribution of customer complaints and diversity of topics related to non-complaints in social media, manually identifying complaints is time-consuming and inefficient. In this study, a supervised learning approach including samples enlargement and classifiers construct was proposed. Applying small labeled samples as training samples, reliable complaints samples and non-complaints samples were identified from the unlabeled dataset during the sample enlargement process. Combining the enlarged samples and the labeled samples, SVM and KNN algorithms were employed to construct the classifier. Empirical results show that the proposed approach can efficiently distinguish complaints from non-complaints in social media, especially when the number of labeled samples is very small

    Spam-T5: Benchmarking Large Language Models for Few-Shot Email Spam Detection

    Full text link
    This paper investigates the effectiveness of large language models (LLMs) in email spam detection by comparing prominent models from three distinct families: BERT-like, Sentence Transformers, and Seq2Seq. Additionally, we examine well-established machine learning techniques for spam detection, such as Na\"ive Bayes and LightGBM, as baseline methods. We assess the performance of these models across four public datasets, utilizing different numbers of training samples (full training set and few-shot settings). Our findings reveal that, in the majority of cases, LLMs surpass the performance of the popular baseline techniques, particularly in few-shot scenarios. This adaptability renders LLMs uniquely suited to spam detection tasks, where labeled samples are limited in number and models require frequent updates. Additionally, we introduce Spam-T5, a Flan-T5 model that has been specifically adapted and fine-tuned for the purpose of detecting email spam. Our results demonstrate that Spam-T5 surpasses baseline models and other LLMs in the majority of scenarios, particularly when there are a limited number of training samples available. Our code is publicly available at https://github.com/jpmorganchase/emailspamdetection

    A Research on Automatic Hyperparameter Recommendation via Meta-Learning

    Get PDF
    The performance of classification algorithms is mainly governed by the hyperparameter configurations deployed. Traditional search-based algorithms tend to require extensive hyperparameter evaluations to select the desirable configurations during the process, and they are often very inefficient for implementations on large-scale tasks. In this dissertation, we resort to solving the problem of hyperparameter selection via meta-learning which provides a mechanism that automatically recommends the promising ones without any inefficient evaluations. In its approach, a meta-learner is constructed on the metadata extracted from historical classification problems which directly determines the success of recommendations. Designing fine meta-learners to recommend effective hyperparameter configurations efficiently is of practical importance. This dissertation divides into six chapters: the first chapter presents the research background and related work, the second to the fifth chapters detail our main work and contributions, and the sixth chapter concludes the dissertation and pictures our possible future work. In the second and third chapters, we propose two (kernel) multivariate sparse-group Lasso (SGLasso) approaches for automatic meta-feature selection. Previously, meta-features were usually picked by researchers manually based on their preferences and experience or by wrapper method, which is either less effective or time-consuming. SGLasso, as an embedded feature selection model, can select the most effective meta-features during the meta-learner training and thus guarantee the optimality of both meta-features and meta-learner which are essential for successful recommendations. In the fourth chapter, we formulate the problem of hyperparameter recommendation as a problem of low-rank tensor completion. The hyperparameter search space was often stretched to a one-dimensional vector, which removes the spatial structure of the search space and ignores the correlations that existed between the adjacent hyperparameters and these characteristics are crucial in meta-learning. Our contributions are to instantiate the search space of hyperparameters as a multi-dimensional tensor and develop a novel kernel tensor completion algorithm that is applied to estimate the performance of hyperparameter configurations. In the fifth chapter, we propose to learn the latent features of performance space via denoising autoencoders. Although the search space is usually high-dimensional, the performance of hyperparameter configurations is usually correlated to each other to a certain degree and its main structure lies in a much lower-dimensional manifold that describes the performance distribution of the search space. Denoising autoencoders are applied to extract the latent features on which two effective recommendation strategies are built. Extensive experiments are conducted to verify the effectiveness of our proposed approaches, and various empirical outcomes have shown that our approaches can recommend promising hyperparameters for real problems and significantly outperform the state-of-the-art meta-learning-based methods as well as search algorithms such as random search, Bayesian optimization, and Hyperband
    corecore