
Southern Illinois University Carbondale Southern Illinois University Carbondale

OpenSIUC OpenSIUC

Dissertations Theses and Dissertations

5-1-2023

A Research on Automatic Hyperparameter Recommendation via A Research on Automatic Hyperparameter Recommendation via

Meta-Learning Meta-Learning

Liping Deng
Southern Illinois University Carbondale, liping.deng@siu.edu

Follow this and additional works at: https://opensiuc.lib.siu.edu/dissertations

Recommended Citation Recommended Citation
Deng, Liping, "A Research on Automatic Hyperparameter Recommendation via Meta-Learning" (2023).
Dissertations. 2098.
https://opensiuc.lib.siu.edu/dissertations/2098

This Open Access Dissertation is brought to you for free and open access by the Theses and Dissertations at
OpenSIUC. It has been accepted for inclusion in Dissertations by an authorized administrator of OpenSIUC. For
more information, please contact opensiuc@lib.siu.edu.

https://opensiuc.lib.siu.edu/
https://opensiuc.lib.siu.edu/dissertations
https://opensiuc.lib.siu.edu/etd
https://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/dissertations/2098?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2098&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

A RESEARCH ON AUTOMATIC HYPERPARAMETER RECOMMENDATION VIA

META-LEARNING

by

Liping Deng

B.S., Anshan Normal University, 2016
M.S., Shenzhen University, 2019

A Dissertation
Submitted in Partial Fulfillment of the Requirements for the

Doctor of Philosophy Degree

School of Mathematical and Statistical Sciences
in the Graduate School

Southern Illinois University Carbondale
May 2023

Copyright by Liping Deng, 2023

All Rights Reserved

DISSERTATION APPROVAL

A RESEARCH ON AUTOMATIC HYPERPARAMETER RECOMMENDATION VIA

META-LEARNING

by

Liping Deng

A Dissertation Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the field of Mathematics

Approved by:

Dashun Xu, Chair

David Olive

Jianghong Xu

Yaser, Samadi

Lingguo, Bu

Graduate School
Southern Illinois University Carbondale

March 30, 2023

AN ABSTRACT OF THE DISSERTATION OF

Liping Deng, for the Doctor of Philosophy degree in Mathematics, presented on March 30,
2023, at Southern Illinois University Carbondale.

TITLE: A RESEARCH ON AUTOMATIC HYPERPARAMETER RECOMMENDATION
VIA META-LEARNING

MAJOR PROFESSOR: Dr. MingQing, Xiao

The performance of classification algorithms is mainly governed by the hyperparame-

ter configurations deployed. Traditional search-based algorithms tend to require extensive

hyperparameter evaluations to select the desirable configurations during the process, and

they are often very inefficient for implementations on large-scale tasks. In this disserta-

tion, we resort to solving the problem of hyperparameter selection via meta-learning which

provides a mechanism that automatically recommends the promising ones without any inef-

ficient evaluations. In its approach, a meta-learner is constructed on the metadata extracted

from historical classification problems which directly determines the success of recommenda-

tions. Designing fine meta-learners to recommend effective hyperparameter configurations

efficiently is of practical importance.

This dissertation divides into six chapters: the first chapter presents the research back-

ground and related work, the second to the fifth chapters detail our main work and contri-

butions, and the sixth chapter concludes the dissertation and pictures our possible future

work.

In the second and third chapters, we propose two (kernel) multivariate sparse-group

Lasso (SGLasso) approaches for automatic meta-feature selection. Previously, meta-features

were usually picked by researchers manually based on their preferences and experience or by

wrapper method, which is either less effective or time-consuming. SGLasso, as an embedded

feature selection model, can select the most effective meta-features during the meta-learner

training and thus guarantee the optimality of both meta-features and meta-learner which

are essential for successful recommendations.

In the fourth chapter, we formulate the problem of hyperparameter recommendation

i

as a problem of low-rank tensor completion. The hyperparameter search space was often

stretched to a one-dimensional vector, which removes the spatial structure of the search

space and ignores the correlations that existed between the adjacent hyperparameters and

these characteristics are crucial in meta-learning. Our contributions are to instantiate the

search space of hyperparameters as a multi-dimensional tensor and develop a novel kernel

tensor completion algorithm that is applied to estimate the performance of hyperparameter

configurations.

In the fifth chapter, we propose to learn the latent features of performance space

via denoising autoencoders. Although the search space is usually high-dimensional, the

performance of hyperparameter configurations is usually correlated to each other to a certain

degree and its main structure lies in a much lower-dimensional manifold that describes the

performance distribution of the search space. Denoising autoencoders are applied to extract

the latent features on which two effective recommendation strategies are built.

Extensive experiments are conducted to verify the effectiveness of our proposed ap-

proaches, and various empirical outcomes have shown that our approaches can recommend

promising hyperparameters for real problems and significantly outperform the state-of-

the-art meta-learning-based methods as well as search algorithms such as random search,

Bayesian optimization, and Hyperband.

Keywords: Machine learning, Classification, Automatic hyperparameter recommendation,

Meta-learning

ii

ACKNOWLEDGMENTS

I would like to thank Prof. MingQing Xiao for his invaluable assistance and insights

leading to the writing of this dissertation and the guidance of research over the past four

years. It is impossible for me to have papers published without his assistance. Prof. Xiao is

a very responsible and diligent professor who always has a high standard for his students and

gives feedback quickly even during the hard time he had to go through, and I have benefited

a lot from the training in my Ph.D. study. I really appreciate his constant enthusiasm

in correcting my academic writing and the encouragement given to me when papers were

rejected in a row.

I would like also to thank Prof. Dashun Xu for his help and time in my schoolwork

when my advisor was on leave so my Ph.D. study could go on smoothly. My sincere thanks

also go to the four members of my graduate committee for their patience, guidance, time,

and suggestions given to my preliminary exam and dissertation. They are Prof. David Olive,

Prof. Jianhong Xu, Prof. Lingguo Bu, and Prof. Yaser Samadi, respectively.

To complete this dissertation, many codes, data, and computation resources were ob-

tained free from the Github, Scikit-learn, UCI machine learning repository, OpenML, Kaggle,

Colab platform from Google, and BigDwag high-performance cluster provided by SIUC. I

sincerely thank those institutions and authors who made these resources publicly available.

Finally, I want to say thanks to my parents, sister, relatives, and all my friends who

gave me tremendous support and care over the past four years so I can finish my Ph.D.

Studying overseas is not so easy, especially given the pandemic started at the beginning of

2020. However, these unforgettable experiences will be important parts of my entire life.

iii

TABLE OF CONTENTS

ABSTRACT . i

ACKNOWLEDGMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . xii

CHAPTERS

1 Introduction · 1

1.1 Background · 1

1.2 Notations · 4

1.3 Hyperparameter optimization · 5

1.3.1 Overview of Search algorithms· 6

1.4 Meta-learning· 9

1.4.1 Meta-learning-based recommendation · 10

1.5 Concluding remarks · 13

2 Automatic Meta-feature Selection · 15

2.1 Introduction · 15

2.2 Related work · 17

2.2.1 Meta-feature selection · 17

2.2.2 Group Lasso· 19

2.3 Multivariate sparse-group Lasso· 20

2.3.1 Majorization minimization · 22

iv

2.4 Meta-learning via SGLasso· 25

2.4.1 SGLasso training · 25

2.4.2 An illustrating example · 27

2.4.3 Meta-feature selection · 28

2.4.4 Performance prediction · 28

2.5 Automatic configuration recommendation· 29

2.5.1 Offline phase · 29

2.5.2 Recommendation · 32

2.6 Experiments · 33

2.6.1 Experimental setup · 33

2.6.2 Experimental reports and elaborations · 35

2.7 Concluding remarks · 45

3 Nonlinear Meta-feature Selection · 48

3.1 Introduction · 48

3.2 Related work · 50

3.3 Multivariate kernel group Lasso · 52

3.3.1 Alternating iteration· 53

3.3.2 Auxiliary function · 55

3.4 Meta-learning via KGLasso · 57

3.4.1 Offline phase · 57

3.4.2 Online phase · 61

v

3.5 Experiments · 62

3.5.1 Experimental configurations · 62

3.5.2 Experimental results and analyses · 64

3.6 Concluding remarks · 75

4 Spatial Structure Preserving· 77

4.1 Introduction · 77

4.2 Preliminary · 80

4.3 Kernel low-rank tensor completion · 81

4.3.1 Data organization · 82

4.3.2 Performance estimation via LRTC · 82

4.3.3 Performance estimation via kernel LRTC · · · · · · · · · · · · · · · · · · 84

4.3.4 Coupled matrix factorization (CMF) · 87

4.3.5 Combining CMF and LRTC · 89

4.4 Automatic configuration recommendation· 90

4.4.1 Offline stage · 90

4.4.2 Online stage · 91

4.5 Empirical validation · 93

4.5.1 Experimental settings · 93

4.5.2 Effectiveness of LRTC on SVM · 95

4.5.3 Effectiveness of LRTC on ViT · 104

4.5.4 Effectiveness of LRTC on ResNet · 108

4.6 Concluding remarks · 112

vi

5 Latent Feature Learning · 114

5.1 Introduction · 114

5.2 Related work · 117

5.2.1 Sequential model-based optimization · 118

5.2.2 Active testing · 119

5.3 Denoising autoencoders · 120

5.3.1 Autoencoder· 120

5.3.2 Denoising autoencoder (DAE) · 121

5.3.3 Loss metric · 122

5.4 Meta-learning via DAE · 123

5.4.1 Cold-starting recommendation · 124

5.4.2 Warm-starting recommendation · 124

5.5 Automatic configuration recommendation· 127

5.5.1 Training stage· 127

5.5.2 Recommendation · 129

5.6 Experiments · 130

5.6.1 Experimental setup · 130

5.6.2 Empirical results · 133

5.7 Concluding remarks · 146

6 Conclusions and Future Work · 148

6.1 Conclusions · 148

6.2 Future work · 148

vii

REFERENCES · 149

APPENDICES

Appendix A UCI Datasets · 161

Appendix B Kaggle Image Datasets · 164

Appendix C Evaluation Metrics · 166

Appendix D Automatic Meta-featureSelection · 169

Appendix E Nonlinear Meta-feature Selection · 172

Appendix F Latent Feature Learning· 173

VITA· 175

viii

LIST OF TABLES

1.1 The mathematical notations defined throughout the dissertation. 5

1.2 The matrix and vector norms defined throughout the dissertation. 6

1.3 The comparisons between the characteristics of the representative meta-learners

from SR, CF, MC, and MR. 13

2.1 The existing meta-features and the number of (adopted) measures. 31

2.2 The parameter settings for SGLasso, MLasso, MSGL, KNN, KKNN, and MLP. . 39

2.3 Comparisons on ACA, ARA, and HR between MLasso, MSGL, KNN, KKNN,

MLP, and SGLasso. The maximal value of each row is highlighted. 39

2.4 The Wilcoxon Signed-Rank tests between MLasso, MSGL, KNN, KKNN, MLP,

and SGLasso. Here“>” represents “is better than”. p-Values that are larger than

0.05 are underlined. 39

2.5 Comparisons on ACA, ARA, and HR between default, RS, Hyperband, BO,

HEBO, and SGLasso (KNN). The maximal value of each row is highlighted. . . 44

2.6 The Wilcoxon Signed-Rank tests between default, RS, Hyperband, BO, HEBO,

and SGLasso (KNN). 46

3.1 The adopted meta-features and the numbers of measures. 63

3.2 Settings for the tuning parameters of KGLasso, KNN, KKNN, MLP, and WarmCF. 65

3.3 Comparisons on ACA, ARA, and HR between CLU, CON, SI, LM, MS, SIT, PC,

RLM, UNI, and KGLasso. The best value of each row is highlighted. 67

3.4 The Wilcoxon Signed-Rank test results between CLU, CON, SI, LM, MS, SIT,

PC, RLM, UNI, and KGLasso. Here “>” represents “is better than”. p-Values

that are larger than 0.05 are underlined. 69

3.5 Comparisons on ACA, ARA, and HR between KNN, KKNN, MLP, WarmCF,

and KGLasso. The maximal value of each row is highlighted. The ACA of the

real optimal configuration on the testing datasets is 77.58%. 71

ix

3.6 The Wilcoxon Signed-Rank tests between KNN, KKNN, MLP, WarmCF, and

KGLasso. Here “>” represents “is better than”. p-Values that are larger than

0.05 are underlined. 72

3.7 Comparisons on ACA, ARA, and HR between DEF, BO, HEBO, HB, RS, and

KGLasso. The maximal value of each row is highlighted. 73

3.8 The Wilcoxon Signed-Rank test results between DEF, BO, HEBO, HB, RS, and

KGLasso. Here “>” represents “is better than”. p-Values that are larger than

0.05 are underlined. 73

4.1 The comparisons of ACA (%), ARA (%), HR (%), and MRR between LRTC and

MFCF under various keeping ratios when three types of kernels are employed.

The maximal value of each column is highlighted. The ACA of the real optimal

configurations on the testing problems is 79.08%. 94

4.2 Wilcoxon signed-rank test results on CA between LRTC and MFCF. The p-values

that are larger than 0.05 are underlined. 96

4.3 The comparisons of ACA (%), ARA (%), HR (%), and MRR between KNN,

KKNN, MLP, MFCF, and CMF when three different orders of hyperparameters

are recommended. The maximal value of each column is highlighted. 100

4.4 Wilcoxon signed-rank test results on CA between KNN, KKNN, MLP, MFCF,

and CMF. The p-values that are larger than 0.05 are underlined. 100

4.5 The comparisons of ACA (%), ARA (%), HR (%), and MRR between LRTC and

MFCF under various keeping ratios when three types of kernels are employed.

The maximal value of each column is highlighted. The ACA of the real optimal

configurations on the testing problems is 91.09%. 105

4.6 Wilcoxon signed-rank test results on CA between LRTC and MFCF. The p-values

that are larger than 0.05 are underlined. 105

x

4.7 The comparisons of ACA (%), ARA (%), HR (%), and MRR between LRTC and

MFCF under various keeping ratios ϵtest when three types of kernel functions are

employed. The maximal value of each column is highlighted. The ACA of the

real optimal configurations on the testing problems is 87.57%. 109

4.8 Wilcoxon signed-rank test results on CA between LRTC and MFCF. The p-values

that are larger than 0.05 are underlined. 109

5.1 The summarization of the adopted candidate classifiers in terms of the number

of hyperparameters and configurations. 129

5.2 The parameter settings for DAE, MFCF, KKNN, and MLP deployed in the ex-

periment with respect to names, usage, and values. 132

5.3 The comparisons of ACA, ARA, HR, and NDCG between MFCF, RS, SMBO,

AT, and DAE. The ACA of the real optimal configurations over testing problems

is 81.78%. 137

5.4 The p-values of Wilcoxon signed-rank test on CA and RA. We accept the alter-

native hypothesis Ha if the p-value is less than 0.05. Here ‘>’ means overpass. . 138

5.5 The comparisons of ACA (%), ARA (%), and HR (%) between KNN, KKNN,

MLP, MFCF, RS, SMBO, and DAE when nine types of meta-features are em-

ployed. The maximal value of each column is highlighted. 140

5.6 The p-values of Wilcoxon signed-rank test on each type of meta-feature. We

accept the alternative hypothesis Ha when the p-value is less than 0.05. 144

6.1 Information Summarization of the UCI datasets adopted in the experiments with

respect to names, number of instances, attributes, and classes. 161

6.2 Information Summarization of the image classification datasets adopted in the

experiments with respect to names, the number of (training, validation) instances,

and the number of classes. 164

6.3 The deployed hyperparameter settings for the candidate classifiers with respect

to types, values, and steps. 174

xi

LIST OF FIGURES

1.1 The general framework of meta-learning-based hyperparameter recommendation. 10

2.1 An illustrating example that shows the training process of SGLasso. Y,X and

W represent the historical performance, meta-features, and estimated outcome,

respectively. 27

2.2 The automatic configuration recommendation architecture based on SGLasso

model, where V (·, ·, ·) is the adopted 10-fold stratified cross-validation, and P

is the balanced classification accuracy. 29

2.3 The problem of multicollinearity existed in the eight types of meta-features. Their

eigenvalues being close to 0 imply that certain variables of meta-features are

highly correlated. 33

2.4 The importance of meta-features when different λ values are applied. The num-

bers of the selected meta-features are given in the parenthesizes on the horizontal

axis. A ratio being 0 means the corresponding meta-feature is completely removed

from the model. 36

2.5 The 6 smallest eigenvalues of the correlation matrix generated by the selected

mete-feature for each λ. Eigenvalues that are close to zero indicate a very high

degree of multicollinearity existed in the meta-feature. 36

2.6 The recommendation performance fluctuation of SGLasso when different degrees

of sparsity are applied. 37

2.7 Comparisons on CA (top), RA (middle), and HR (bottom) between MLasso,

MSGL, KNN, KKNN, MLP, and SGLasso on each single testing dataset. 42

2.8 Comparisons on RA (top), and HR (bottom) between default, RS, Hyperband,

BO, HEBO, and SGLasso on each single testing dataset. 44

2.9 Comparisons on RA (top) and HR (bottom) between default, RS, Hyperband,

BO, HEBO, and KNN on each single testing dataset. 46

xii

3.1 The automated configuration recommendation architecture based on the proposed

KGLasso model associated with meta-learning functionality. 58

3.2 The number of retained meta-features and instances in our hyperparameter rec-

ommendation experiments. The y-axis shows the number of retained instances

and the x-axis shows the various applied model parameters, i.e., λ (left) and σ

(right). A zero means the corresponding meta-feature is not selected by the model. 65

3.3 The influence of model parameters on the recommendation performance of

KGLasso. 67

3.4 Comparisons on CA (top) and RA (bottom) between KNN, KKNN, MLP,

WarmCF, and KGLasso on each single testing dataset. 70

3.5 The comparisons on NDCG between KNN, KKNN, MLP, WarmCF, and KGLasso. 70

3.6 Comparisons on CA (top) and RA (bottom) between DEF, BO, HEBO, HB, RS,

and KGLasso on each single testing dataset. 74

4.1 An example of performance data organization of RBF-SVM, which has two hy-

perparameters ‘C’ and ‘Gamma’, in tensor format (left) and in vector format (right)

on the UCI problem firm-teacher-clave-direction. 78

4.2 An example of 3D data organization. The first three frontal slices are the per-

formance data of SVM on three historical problems while the fourth slice is the

incomplete performance data on a new problem required to be completed. . . . 83

4.3 The automatic configuration recommendation framework based on our proposed

approaches. 90

4.4 The comparisons between RS, PSO, BO, and LRTC, where the reported perfor-

mance is the average of ACA, ARA, and HR. 96

4.5 The comparisons between CMF, LRTC, and their combinations on the average

of ACA, ARA, and HR. 102

4.6 The performance fluctuation of LRTC-RBF on SVM when the keeping ratio on

the training tensor is changing from 10% to 100%. 103

xiii

4.7 The comparisons between RS, PSO, BO, and LRTC, where the reported perfor-

mance is the average of ACA, ARA, and HR. 107

4.8 The performance fluctuation of LRTC-RBF on ViT when the keeping ratio on

the training tensor is changing from 10% to 100%. 108

4.9 The comparisons between RS, PSO, BO, and LRTC, where the reported perfor-

mance is the average of ACA, ARA, and HR. 111

4.10 The performance fluctuation of LRTC-RBF when the keeping ratio ϵtrain on the

training tensor is changing from 10% to 100%. 112

5.1 The illustration of a two-layer autoencoder, where θ = {W1,W2,b1,b2} and

θ′ = {W′
1,W

′
2,b

′
1,b

′
2} are separately the collection of weight and bias parameters

of encoder and decoder. 120

5.2 The illustration of a two-layer denoising autoencoder, where the empty circles of

ỹ stand for the zero entries. 121

5.3 The illustration of the performance estimation of the warm-starting DAE com-

bined with MMR sW and the trained decoder gθ′ , where f is the meta-feature

extractor. x, z, and ypred stand for meta-features, latent features, and the esti-

mated performance, respectively. 125

5.4 The illustration of meta-learning architecture based on our proposed DAE ap-

proach (cold-starting and warm-starting). 128

5.5 The distributions of the original configuration space (top), latent space of

MFCF (middle), and latent space of DAE (bottom) on training instances when

ϵ = 0.001, 0.5, and 1. The two-dimensional data is acquired by adopting multidi-

mensional scaling. One color represents one clustering and they are determined

by the k-means algorithm. 135

5.6 The comparisons of CA and RA between MFCF, RS, AT, SMBO, and DAE on

each testing dataset. 137

xiv

5.7 The comparisons of NDCG between KNN, KKNN, MLP, MFCF, and DAE. We

do not give the NDCGs about RS and SMBO since they are not available. . . . 139

5.8 The comparisons of RA between KNN, KKNN, MLP, MFCF, and DAE on each

testing dataset. 143

5.9 The effectiveness of warm-starting DAE when different keeping ratios (ϵ) are

deployed. 145

xv

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Classification is one of the most critical tasks in the study of machine learning, and

many classification algorithms, such as support vector machines [1], decision trees [2], ran-

dom forests [3], and neural networks [4], have been developed for solving various classification

problems. The performance of classification algorithms is mainly governed by the hyperpa-

rameter configurations deployed, mainly under the mathematical framework [5]. To obtain

the desirable outcomes, classification algorithms bear the required costs such as time and

computational resources to determine the well-suited hyperparameter configurations for each

single classification task, which presents high demand for efficient classification in real scenar-

ios. Therefore, hyperparameter optimization, whose goal is to seek optimal hyperparameter

configurations, has been becoming one of the most important research topics in the machine

learning community for recent years [6, 7, 8, 9].

Search-based methods associated with hyperparameter selection are widely studied in

the literature. In this approach, an appropriate search space of the target algorithm is

predefined in which the optimal hyperparameter configuration resides. By exploring various

well-known search strategies, many search algorithms have been designed and applied to

hyperparameter tuning such as grid search, random search [7], Bayesian optimization [6],

Hyperband [8], estimation of distribution algorithms [10], particle swarm optimization [11],

etc. Nevertheless, since search algorithms often require extensive configuration evaluations

from scratch for every single new task, the low efficiency on large-size problems appears

1

to be a critical issue. Quite often, practitioners have to limit the search rounds due to the

burden of high computational costs. As the number of hyperparameters increases, the size of

the search space can grow exponentially, and thus looking for effective configurations within

limited searches deems to be necessary.

Meta-learning [12], or learning to learn, provides a mechanism that learns the experience

from historical classification tasks and then uses it to solve new problems in a much more

effective and efficient way. Meta-learning has been widely investigated for automatic hyper-

parameter configuration recommendations where time-consuming configuration evaluations

are not needed during the recommendation phase [13, 14]. In its process, the metadata,

i.e., dataset characteristics (called meta-features) and classification performance of the can-

didate hyperparameter configurations, is extracted from a group of historical classification

problems. Accordingly, a meta-learner is built on the metadata to identify the intrinsic

relationship between dataset characteristics and historical performance, and therefore, the

prospective configuration of a new problem can be inferred by its dataset characteristics.

Because of their critical roles, both meta-learners and meta-features are the essential com-

ponents for configuration recommendation tasks under the framework of meta-learning.

One of the classical and typical recommendation algorithms is KNN [15, 16], which

determines the similarity between the new problems and the historical problems by measur-

ing the suitable defined distance among meta-features, and the problems that are close to

the new problem (measured by “distance”) are assumed to be similar ones, thus the shared

optimal hyperparameter configurations may be identified. Another type of hyperparam-

eter recommendation strategy in meta-learning is model-based collaborative filtering (CF)

[17, 18]. In the context of CF, configurations are treated as items and problems as users. The

2

performance can be evaluated by the score for which the users rate the items. Hence, when

partial evaluations of a new problem are available, the performance of the entire configura-

tion space can be predicted via CF, and the one with the highest predictive performance is

retrieved. The notable advantage of CF is that there is no need to evaluate all configurations

in the search space over the historical problems, leading to the efficiency of the offline per-

formance evaluation being further improved. Other meta-based models also include decision

trees [19], linear regression [20, 21], neural networks [22], and self-organizing maps [3], etc,

where hyperparameter configuration selection is considered as either a meta-classification or

meta-regression problem.

Meta-features are a group of measures that characterize datasets from various aspects,

capturing the characteristics of an individual dataset uniquely [23]. There are mainly eight

types of meta-features for classification problems in literature, namely, statistics and infor-

mation theory (SIT) [21, 20], model structure (MS) [24, 25], (relative) landmarking (LM,

RLM) [26, 27, 28], structural information (SI) [15], concept (Con) [29, 30], clustering (Clu)

[31], and problem complexity (PC) [32]. Each of them characterizes datasets following differ-

ent assumptions, e.g., SIT collects simple statistical or information-theory-based measures to

describe datasets such as the number of instances (classes, attributes), class probability (en-

tropy), and mutual information; LM and RLM adopt the performance of base learners with

distinct learning strategies, called landmakers, evaluated on the datasets as meta-features;

PC tries to grasp the decision boundaries of classification datasets and measure the com-

plexity of making a correct classification.

Although the existing approaches in meta-learning have achieved significant progress

recently, there are many issues that remained to be addressed. For instance, because of the

3

incapability of selecting the most suitable meta-features automatically for existing meta-

learners, meta-features must be manually prescribed based on researchers’ preferences and

experience for various recommendation tasks for which the optimal effectiveness often can-

not be guaranteed. In current studies, some important information such as data spatial

structure and the latent space associated with its hyperparameter search space, which are

critical characteristics in hyperparameter recommendation tasks, has not been applied to

the algorithm learning process yet. In this dissertation, we aim to address these challenges

by developing new effective hyperparameter recommendation approaches under the frame-

work of meta-learning. Respectively, we 1) propose two multivariate group-Lasso models for

automatic meta-feature selection; 2) model the search space as multi-dimensional tensors

to sustain its spatial structure and convert the recommendation tasks as a tensor comple-

tion problem; 3) discover the latent features of search space via denoising autoencoders to

identify the performance distribution of candidate configurations. Extensive experiments

on real-world classification problems are provided and the obtained results demonstrate the

superiority of our proposed approaches for hyperparameter recommendation, compared to

the state-of-the-art meta-learning baselines as well as various search algorithms.

1.2 NOTATIONS

We summarize the common, standard mathematical notations as well as matrix (vector)

norms used throughout this dissertation in Table 1.1 and Table 1.2, respectively, and the

other specific ones will be explained when necessary.

4

Table 1.1: The mathematical notations defined throughout the dissertation.

Name Description Example

Matrices Bold uppercase letters X

Vectors Bold lowercase letters x

Tensors Bold calligraphic uppercase letters X
Identity Matrices Bold uppercase letter “I” I

Zero Matrices (Vectors) Bold number “0” 0

Scalars Lowercase letters x

Entries of Matrices Uppercase letters with subscripts Xij

Entries of Vectors Lowercase letters with subscripts xi
Entries of Tensors Calligraphic letters with subscripts Xi1,i2,··· ,id
Columns of Matrices Bold lowercase letters with subscripts xi

Rows of Matrices Bold lowercase letters with subscripts xi⋆

Matrix Transposes Bold uppercase letters with superscript ⊤ X⊤

Vector Transposes Bold lowercase letters with superscript ⊤ x⊤

Trace Trace of square matrices tr(X)

Real Number Field Blackboard bold uppercase letter “R” R
Sets Capital omega Ω

Classification Algorithms Ralph Smith’s formal script “A” A

Datasets Ralph Smith’s formal script “D” D

1.3 HYPERPARAMETER OPTIMIZATION

In literature [33], for a given classifier A , e.g., support vector machines (SVM), the

hyperparameter search space can be described by the Cartesian product

ΩA = Ω1 × Ω2 × · · · × Ωq, (1.1)

where q is the number of hyperparameters of classifier A , and Ωi, i = 1, 2, · · · , q, represent

the search space of each hyperparameter. These search spaces can be real-valued (e.g., the

regularization coefficient and RBF kernel width for SVM), integer-valued (e.g., the number

of nearest neighbors for KNN), and binary (e.g., split criteria “entropy” or “gini” for

5

Table 1.2: The matrix and vector norms defined throughout the dissertation.
Name Object Definition
L1-norm x ∈ Rn ∥x∥1 =

∑n
i=1 |xi|

L2-norm x ∈ Rn ∥x∥2 =
√∑n

i=1 x
2
i

Frobenius-norm X ∈ Rm×n ∥X∥F =
√∑m

i=1

∑n
j=1X

2
ij

Kernel-norm X ∈ Rm×n ∥X∥⋆ =
∑min{m,n}

i=1 σi, σi’s are the singular values of X

L2,1-norm X ∈ Rm×n ∥X∥2,1 =
∑n

j=1

√∑m
i=1X

2
ij

decision trees). For a given dataset D , we are required to select the optimal hyperparameter

configuration (in short, we call it configuration hereafter)

ω⋆ = [ω1, ω2, · · · , ωq],

where ωj ∈ Ωj, j = 1, 2, · · · , q, to optimize the classification performance of A in the form

of

ω⋆ = arg optω∈ΩA
V (P ,Aω,D),

where V (·, ·, ·) represents a validation strategy, and the most common one is the k-fold cross-

validation. The notation P stands for a predefined classification performance metric, e.g.,

classification accuracy (error) rate or statistical indices.

1.3.1 Overview of Search algorithms

Grid search, known as a model-free blackbox strategy, was first proposed for hyperpa-

rameter selection in the 1990s [9]. Based on its mechanism, each point in the hyperparameter

search space must be evaluated, so grid search can find the optimal one among the candidate

configurations. However, its computational complexity grows exponentially as the number

6

of hyperparameters increases1. In contrast, random search approach takes samples from the

configuration space randomly, which then are evaluated with a preset stopping criterion [7].

It works better than grid search when part of the configurations is more effective than the

others. Because of model-free, the advantage of both grid search and random search lies in

that the configuration evaluations can be deployed in a parallel way.

Bayesian optimization [6] is a model-based blackbox global hyperparameter selection

method, different from grid search and random search, it iteratively seeks the optimal con-

figuration using the experience learned from historical configuration searches. Bayesian

optimization comprises a probabilistic surrogate model, e.g., Gaussian process, random for-

est, tree Parzen estimator, etc., that is fitted to all historical evaluations explored so far,

and an acquisition function, e.g., expected improvement, which decides the most prospective

configuration that should be evaluated next. Bayesian optimization has been widely applied

for hyperparameter tuning in machine learning and deep learning, and many variants, e.g.,

heteroscedastic evolutionary Bayesian optimization [34] and gradient Bayesian optimization

[35], are proposed for effective hyperparameters tuning in applications.

Li et al. [8] proposed a novel random search-based algorithm, called Hyperband, by

formulating hyperparameter optimization as a non-stochastic infinite-armed bandit prob-

lem. For a given number of configurations (‘n’) and total finite budget (‘B’), e.g., time,

and ‘B/n’ stands for the maximal budget that can be assigned for each configuration, ‘n’

configurations are randomly picked from the search space and then the SuccessiveHalving

algorithm [36] is leveraged to determine the best one among the selected. In the process

1For example, there are 175 billion parameters in OpenAI’s GPT-3. Details can be seen at
https://www.sciencefocus.com/future-technology/gpt-3/

7

of SuccessiveHalving, we purport to drop some mediocre configurations and thus allocate

more budget for the remaining configurations in the next iteration. To balance the number

of tested configurations ‘n’ and the budget ‘B/n’ allocated for each configuration, the authors

embedded SuccessiveHalving into the simple grid search to select the best ‘n’. Despite

Hyperband sometimes outperforming Bayesian optimization, a significant amount of com-

putational resources must be consumed and it does not utilize any historical evaluations as

Bayesian optimization does, which often impacts the effectiveness.

Uniquely, the Estimation of Distribution Algorithms (EDAs) [10] attempt to explore

an explicit probabilistic model that is built on the promising configurations found so far to

suggest the prospective configuration for the next iteration. EDAs start with a population

of candidate configurations of the algorithm which is generated according to the uniform

distribution over the configuration search space. This population of configurations is then

evaluated and scored so we can rank the configurations based on their performance to select

the partial most promising configurations among them, e.g., 50% of the population is kept.

Next, an explicit probabilistic model is constructed on the selected configurations, which is

used to generate new configurations by sampling the distribution encoded by this model.

Thus, we can incorporate them back into the old population (or simply replace them) and

repeat the process until a stopping criterion is attained. EDAs have a wide range of applica-

tions [37], such as military antenna design, groundwater remediation design, and economic

dispatch, and so on.

Additionally, other approaches contain gradient search [38], population-based search,

e.g., particle swarm optimization [11], Tabu search [39], and racing algorithm [40], etc. The

detailed surveys of search algorithms can be found in [41].

8

1.4 META-LEARNING

Suppose that {D1,D2, · · · ,Dn} are a collection of historical classification datasets,

and A is the investigated classification algorithm instantiated with search space ΩA =

{ω1,ω2, · · · ,ωm} containing m points, then the metadata {xi,yi} is extracted from each

of Di, where xi is meta-features and yi = [y
(i)
ω1 , y

(i)
ω2 , · · · , y

(i)
ωm]

⊤ is the classification perfor-

mance of the candidate hyperparameter configurations, respectively. A meta-learnerMθ is

next built on the metadata to grasp the underlying relationship between meta-features and

classification performance such that

ω⋆
i =Mθ(xi), i = 1, 2, · · · , n (1.2)

where θ is the model parameters determined via meta-learning and ω⋆
i stands for the optimal

configuration on dataset Di, i.e., ω
⋆
i = argmaxω([y

(i)
ω1 , y

(i)
ω2 , · · · , y

(i)
ωm]), and our goal is that for

a new dataset D with meta-feature x, we can recommend the one suggested by the trained

meta-learner to D , i.e., ωrecom =Mθ(x), which satisfies

ωrecom = argmax
ω

([yω1 , yω2 , · · · , yωm]), (1.3)

where y = [yω1 , yω2 , · · · , yωm] are the true performance of A evaluated on D , here y is

unknown and is to be determined.

We summarize the framework of meta-learning-based recommendation, similar to [42],

in Figure 1.1. As one can see, during the recommendation phase, computation resources are

needed to extract meta-features instead of evaluating any configurations as search algorithms

9

Figure 1.1: The general framework of meta-learning-based hyperparameter recommendation.

do.

1.4.1 Meta-learning-based recommendation

Essentially, the meta-learning-based hyperparameter selection methods only differ from

the recommendation algorithms (or meta-learners) that are employed. Currently, there are

four common categories in literature, i.e., similarity-based recommendation, collaborative

filtering, meta-classification, and meta-regression, respectively, as illustrated next in detail.

Similarity-based recommendation (SR): For a completely new classification task

at hand, the similarity with the historical datasets can be characterized by defining appro-

priate metric distances, e.g., Euclidean distance, Cosine, and L1 distance, between their

meta-features to determine the most suitable configurations for the recommendation. KNN

is usually adopted to select the most K similar datasets so that we can sort the configu-

rations on each dataset and recommend the one that has the minimal average rank over

the K datasets to the new dataset [43, 44, 45, 16]. Soares et al. [43] first applied KNN

to the kernel width selection for SVM in regression tasks, in which the metadata on 42

10

datasets and 14 statistical meta-features are generated. Similarly, Gomes et al. [44] built

a recommendation architecture on 40 regression problems to select both kernel width and

regularization coefficient for SVM, the suggested configurations were further fed to search

algorithms, such as particle swarm optimization and Tabu search, to obtain more effective

ones. In general, the number of neighbors K itself will affect the recommendation results.

Smith et al. [46] suggested an interval to choose K, whose range is from 10% to 25% of the

total number of historical datasets. This method only utilizes several closest datasets, and

it does not make use of any information from other remaining historical datasets that may

contain useful information for the data overall characteristics.

Collaborative filtering (CF): Stern et al. [17] pioneered a new approach by utiliz-

ing the ideal of model-based collaborative filtering (CF). The performance prediction of a

configuration is treated as the prediction of the score that a user (dataset) may give to an

item (configuration). Probabilistic matrix factorization (PMF) techniques were employed

to mine the latent variables of both items (configurations) and users (datasets). One issue

of this approach is that we must evaluate some configurations in advance for a new given

classification task. Yang et al. [47] employed a D-optimal experiment design to select the

configuration evaluation subset that requires an extra computational effort. To deal with

this issue, Misir and Sebag [18] trained a model, e.g., random forest, that maps meta-features

to the extracted variables to estimate the preference of the new dataset. However, this es-

timation often appears to be not accurate enough. Fusi and Elibol [48] leveraged PMF and

Gaussian process to predict the performance of configurations, where Bayesian optimization

can be applied efficiently to search for the best configuration associated with a low number of

dimensions. The initialization of Bayesian optimization is done by KNN but the cold-starting

11

issue remains.

Meta-Classification (MC): Mantovani et al. [49] considered the configuration rec-

ommendation as a binary classification problem. They first evaluated the SVM on 124

datasets using default settings from some libraries, e.g., LibSVM and Weka, and the config-

urations that were acquired through searching algorithms, then the datasets were divided into

two classes, each of them in which the default setting performs better was labeled as 1 and

otherwise was labeled as 0. Six popular classifiers were therefore selected, e.g., decision trees,

naive Bayes, multilayer perceptron, etc., to fit the metadata appropriately. However, under

this setting, it could only recommend two fixed configurations for new problems. Later, the

same authors conducted a further study by focusing on the tuning hyperparameters of SVM

within the same framework [50]. In other related literature, the decision tree (DT) classifier

was widely adopted as a meta-learner because of its ability in capturing the importance of

meta-feature variables [51, 52, 53]. The notable drawback of meta-classification is that some

configurations may be biased by the historical datasets, namely, the configurations that are

not included in labels will never be selected for new datasets.

Meta-Regression (MR): Gama and Brazdil [54] first used linear regression models

to solve the problem of classifier selection, where the classification errors were normalized

in three manners by transforming them into other units so that they are comparable across

different datasets. Sohn [20] utilized a logistic transformation to normalize the classifica-

tion error rates that lead to a logistic regression model built on 19 datasets. To eliminate

the influence of the small size of the data pool, the Bootstrap re-sampling approach was

adopted to select a subset of meta-features based on the statistical information. However,

these regression models consider neither the multicollinearity existing in meta-features nor

12

Table 1.3: The comparisons between the characteristics of the representative meta-learners
from SR, CF, MC, and MR.

Meta-learner (Category) 1 2 3 4 5 6
KNN (SR) ✓ ✓
PMF (CF) ✓ ✓ ✓
DT (MC) ✓ ✓ ✓
KM (MR) ✓ ✓ ✓

the nonlinear relationship between meta-features and classification performance, and hence

they are not suitable for configuration selection. Furthermore, Bensusan and Kalousis [55]

constructed the regression models using Cubist and kernel methods (KM), where a larger

pool of datasets, as well as more types of meta-features, were considered, but reasons for

choosing these two regression models were not well justified and the applicable scope was

unclear.

In summary, we list the characteristics of the representative meta-learners from each

category in Table 1.3, where the numbers 1, 2, 3, 4, 5, and 6 represent the meta-learner:

utilizes all the datasets, utilizes all configurations, has the model interpretability, does not

have the cold-starting problem, performs meta-feature selection automatically, and utilizes

the spatial structure of search spaces, respectively.

1.5 CONCLUDING REMARKS

This chapter overviews two hyperparameter tuning strategies in the literature, namely,

search and meta-learning-based recommendation. Search-based algorithms require configu-

ration evaluations in their processes which are inefficient in practice. Instead of searching,

meta-learning resorts recommend promising ones based on the experience learned from his-

torical classification problems, where the meta-learner is supposed to grasp the intrinsic

connection between dataset features and the best underlying configurations. Nevertheless,

13

existing approaches have their own disadvantages which cannot produce the desired recom-

mendation performance. The next four chapters will present our work that solves various

demerits that existed in previous approaches.

14

CHAPTER 2

AUTOMATIC META-FEATURE SELECTION

2.1 INTRODUCTION

Currently, there are mainly eight types of meta-features in literature, which are statistics

and information theory, model structure, (relative) landmarking, structural information,

concept, clustering, and problem complexity [56, 57]. Since meta-features are the main

source for the meta-learner to generate the configuration recommendation, the study on

the automatic selection of meta-features appears to be practically attractive. Depending

on the datasets, some measures from different types of meta-features are either redundant

or correlated, and thus meta-feature selection often becomes necessary in order to achieve

effective and efficient recommendations. However, to the best of our knowledge, the current

study in dealing with meta-feature selection under the framework of meta-learning is quite

limited. For example, Todorovski [58] and Kalousis [59] employed the wrapper method to

conduct meta-feature selection, where meta-learner training is required for every round of

meta-feature subset search, which leads to a computationally expensive process. Similarly,

Cruz and Sabourin et al. [60] adopted the binary particle swarm optimization to search the

optimal meta-feature subset, which is designed only for dynamic ensemble selection tasks,

and the computational issues that appeared in the wrapper method remain. Bilalli and

Abello et al. [19] combined the principal component analysis with a partial correlation

graph to discover the important latent features of meta-features but little time budget can

be saved during the meta-feature extraction phase.

In this chapter, we propose a novel multivariate sparse-group Lasso (SGLasso) method,

15

aiming at automatic meta-feature selection, for the classification hyperparameter configu-

ration recommendations under the framework of meta-learning. Different from the existing

approaches, as an embedded feature selection model, SGLasso can inlay meta-feature selec-

tion into the meta-learner training process so that the desired meta-features can be identified

and the optimal performance of the meta-learner can be attained. More specifically, we first

set up a multivariate sparse-group Lasso meta-regression problem on a collection of historical

datasets where meta-features and historical classification performance of configurations are

applied as predictors and responses respectively. Then, an efficient algorithm is developed

to learn the model coefficients used for meta-feature selection. For a new dataset, the clas-

sification performance of candidate configurations can be predicted by the meta-features of

the new dataset selected by the trained SGLasso model. As a result, the configuration with

the highest predictive performance can be recommended for the new dataset. The main

contributions of this chapter are summarized as follows:

• Different from current approaches in the literature, we establish a new model via mul-

tivariate sparse-group Lasso learning, focusing on the meta-feature selection through

meta-learning. Technically, we adopt the L2,1-norm (see, e.g., [61, 62, 63]) in the regu-

larization to reduce the number of model parameters and promote the sparsity between

and within groups. An efficient learning algorithm via majorization minimization is

developed for SGLasso training in the selection of principle meta-futures.

• The developed SGLasso model is embedded into the configuration recommendation

under the framework of meta-learning. An automatic hyperparameter configuration

architecture is fully developed and tested on 136 UCI datasets for applications.

16

• Extensive experiments are conducted to demonstrate the effectiveness of our proposed

approach. The empirical results have shown that SGLasso is capable of recommend-

ing highly suitable configurations via feature selection and outperforming the existing

meta-learning approaches as well as classic search algorithms such as random search,

Bayesian optimization, and Hyperband.

2.2 RELATED WORK

2.2.1 Meta-feature selection

In literature, how to obtain dataset features refers to meta-feature selection. Todorovski

and Brazdil et al. [58] first experimentally studied the potential of automatic meta-feature

selection based on recommendation performance, and they adopted the wrapper method to

perform the meta-feature selection with two types of meta-features: statistics & information

theory and landmarking. A clear performance improvement was observed based on their ap-

proach. Later, Kalousis and Hilario [59] conducted a similar study with an increasing number

of features, and found that the wrapper method was not efficient due to the computation

intensity.

Bilalli and Abello et al. [19] proposed to use principal component analysis together

with partial correlation graphs to select the latent features of meta-features. In their ap-

proach, principal component analysis was first applied to the extracted meta-features, and

the orthogonal rotation was next employed on the retained principal factors to obtain latent

features from the meta-features. Then, the latent features were further augmented by the

performance of a candidate algorithm of interest, on which a partial correlation graph was

generated to visualize the subtle relationship between the latent features and the responses so

17

that the most relevant latent features can be picked. They also empirically showed that the

automatic meta-feature selection can improve the predictive power of the deployed meta-

learner (random forest). However, their work only considered the simple 61 statistical or

information theory-based meta-features and the methodology was designed for the perfor-

mance prediction of a single algorithm therefore it is not applicable to the hyperparameter

recommendation task.

At the same time, Cruz and Sabourin et al. [60] employed the so-called binary parti-

cle swarm optimization (BPSO) to conduct the automatic meta-feature selection, and they

adopted both S-shaped and V-shaped transfer functions that delivered the best overall per-

formance. The objective function of BPSO is the difference between the performance of the

configuration recommended by the meta-learner fitted on the currently selected meta-features

and that of the ideal optimal configuration, which implies that meta-learner training is re-

quired in each round of search. Their approach bears a heavy burden of computations and

hinders the efficiency of meta-learning. Further, in their experiments, their studies focused

on the problem of dynamic ensemble selection of classifiers. The effectiveness of their pro-

posed BPSO technique for the automatic meta-feature selection on 15 sets of meta-features

and 30 datasets confirmed that meta-features are required to be well-selected for each indi-

vidual recommendation task. Also, their proposed approach for meta-feature selection was

designated to measure the level of competence for the basis classifiers on input samples and

was limited to the dynamic ensemble selection problem, rather than a general meta-feature

selection.

18

2.2.2 Group Lasso

Group Lasso was initially developed by Yuan and Lin [64] for the univariate regression

problems, the proposed objective function is given by

min
β1,β2,··· ,βp

∥y −
p∑

l=1

X⊤
l βl∥22 + λ

p∑
l=1

√
gl∥βl∥2,

where y ∈ Rn,Xl ∈ Rrl×n,
√
gl depends on the group sizes, and βl ∈ Rrl , l = 1, 2, · · · , p. This

model is allowed to drop some groups of variables, i.e., impose the between-group sparsity

by setting the corresponding parameter vector βl to be zeros via tuning parameter λ. To

add sparsity within the groups, Simon et al. [65] proposed a sparse-group Lasso, which is

formulated as

min
β1,β2,··· ,βp

∥y −
p∑

l=1

X⊤
l βl∥22 + λ1

p∑
l=1

∥βl∥2 + λ2

p∑
l=1

∥βl∥1.

This model can enforce both within and between group sparsity via a traditional L1-norm

constraint.

Multivariate sparse-group Lasso [66], which deals with the cases of high-dimensional

response variables, is given as follows:

min
W∈Rm×r

∥Y −
p∑

l=1

WlXl∥2F + λ

p∑
l=1

∥Wl∥F + λG∥W∥1,

where W = [W1,W2, · · · ,Wp], ∥W∥1 =
∑

ij |Wij|, and Y ∈ Rm×n. Obviously, this model

considers the element-wise sparsity of W, and thus the predicted response y for any given

19

predictor xmust be sparse too, which can present undesirable restrictions for linear regression

tasks. Moreover, such an approach is not suitable for the meta-feature selection addressed in

this chapter since sparsity or small value of features may lead to numerical instability during

the optimization process. We will address this issue under our approach setting.

2.3 MULTIVARIATE SPARSE-GROUP LASSO

Suppose that Y = [y1,y2, · · · ,yn] ∈ Rm×n is the response matrix and each column

yi ∈ Rm is an instance with continuous entries, and X = [x1,x2, · · · ,xn] ∈ Rr×n is the

design matrix and each column xi ∈ Rr is an instance. Then a multivariate multiple linear

regression model can be constructed as

Y = WX+ E, (2.1)

where E = [ϵ1, ϵ2, · · · , ϵn] ∈ Rm×n is the error term and ϵi ∼ Nm(0, σ
2
i I), i = 1, 2, · · · , n,

where Nm(·, ·) represents the multivariate Gaussian distributions. Aiming at being able to

conduct feature selection and capture the intrinsic connection between the predictors and

responses, a multivariate sparse-group Lasso (SGLasso) model is constructed as

F (W) =
1

2
∥Y −

p∑
l=1

WlXl∥2F + λ

p∑
l=1

∥Wl∥2,1, (2.2)

where W = [W1,W2, · · · ,Wp] ∈ Rm×r is the coefficient matrix in which Wl ∈ Rm×rl , l =

1, 2, · · · , p, and Xl ∈ Rrl×n (l = 1, 2, · · · , p) with
∑p

l=1 rl = r is acquired by partitioning X

row-wisely into p disjoint groups. λ > 0 is a tuning parameter that controls the sparsity of

W in (2.2). Notice that model (2.2) degrades to multivariate Lasso [67] when p = 1.

20

To solve for W that minimizes (2.2), we adopt block-coordinate descent by fixing

Wl, l ̸= k, and solve for Wk each time. Hence, we can rewrite the loss function of (2.2)

by ignoring the terms that do not involve Wk as

F (Wk) =
1

2
∥S−k −WkXk∥2F + λ∥Wk∥2,1 + C−k, (2.3)

where S−k = Y −
∑p

l ̸=k WlXl, and C−k = λ
∑p

l ̸=k∥Wl∥2,1 is a constant. To simplify nota-

tions, we rewrite (2.3) as

F (B) =
1

2
∥S−BH∥2F + λ∥B∥2,1 + C, (2.4)

where S = S−k ∈ Rm×n, B = Wk ∈ Rm×rk , H = Xk ∈ Rrk×n, and C = C−k.

With some matrix algebra, the gradient of (2.4) with respect to B is given by

∇F (B) = −SH⊤ +BHH⊤ + λU, (2.5)

where U = [u1,u2, · · · ,urk] and

ui =

βi

∥βi∥2
, if ∥βi∥2 ̸= 0,

zi, if ∥βi∥2 = 0,

(2.6)

where βi is the ith columns of B and ∥zi∥2 ≤ 1. Therefore, if ∥βi∥2 ̸= 0, then βi can be

21

updated by letting ∇F (B) = 0 via

βi =

(
Sh⊤

i⋆ −
rk∑
j ̸=i

βj∥hj⋆∥22

)(
∥hi⋆∥22 +

λ

∥βi∥2

)−1

; (2.7)

otherwise, if ∥βi∥2 = 0, it satisfies

∥∥∥Sh⊤
i⋆ −

rk∑
j ̸=i

βj∥hj⋆∥22
∥∥∥
2
≤ λ. (2.8)

In fact, updating rule (2.7) is unstable in the scenarios where ∥hi⋆∥2 → 0, e.g., the

ith feature vector of H contains very small values or it is extremely sparse. The analysis

of the instability of (2.7) can be found in Appendix IV. Next, we tackle this issue via the

majorization minimization scheme.

2.3.1 Majorization minimization

Denote

l(S,B) =
1

2
∥S−BH∥2F , (2.9)

and assume that H does not have zero rows, namely, 1
∥hj⋆∥22

, j = 1, 2, · · · , rk, are well-defined,

then we have the following theorem and the detailed proof is given in Appendix IV for the

sake of completeness.

Theorem 1. Centered at Bt, a conformable constant matrix, (2.9) can be majorized as

l(S,B) ≤ l(S,Bt) + tr((B−Bt)⊤∇l(S,Bt)) +
1

2a
∥B−Bt∥2F , (2.10)

22

where

0 < a ≤ min{ 1

∥h1⋆∥22
,

1

∥h2⋆∥22
, · · · , 1

∥hrk⋆∥22
} (2.11)

and

∇l(S,Bt) = −SH⊤ +BtHH⊤.

By adding λ∥B∥2,1 + C to the both sides of (2.10), one has

F (B) ≤ G(B,Bt), (2.12)

where

G(B,Bt) = l(S,Bt) + tr((B−Bt)⊤∇l(S,Bt)) +
1

2a
∥B−Bt∥2F + λ∥B∥2,1 + C, (2.13)

i.e., F (B) is majorized by G(B,Bt).

It is easy to see that minimizing (2.13) is equivalent to minimizing (2.4). Without loss

of generality, taking the derivative of (2.13) with respect to βi, i.e. the i
th column of B, one

has

∇G(βi,β
t
i) =

1

a
(βi − β̃

t

i) + λui, (2.14)

where β̃
t

i = βt
i − a∇l(S,βt

i) and ui is given in (2.6). Letting ∇G(βi,β
t
i) = 0 and with some

algebra, we have βi = 0 if

∥β̃t

i∥2 ≤ aλ, (2.15)

23

and otherwise

βi = β̃
t

i

(
1 +

aλ

∥βi∥2

)−1

. (2.16)

Taking L2-norm on both sides of (2.16) and combine the result of (2.15), one obtains

∥βi∥2 = (∥β̃t

i∥2 − aλ)+, (2.17)

where (·)+ is an operator that maps negative entries to zeros. Plug (2.17) into (2.16), one

can have

βi = β̃
t

i

[
1 +

aλ

(∥β̃t

i∥2 − aλ)+

]−1

= β̃
t

i

(
1− aλ

∥β̃t

i∥2

)
+

.

(2.18)

The uniqueness solution of βi in (2.16) is also shown in Appendix IV.

Proposition 1. (2.18) is the unique solution of (2.16).

Now we combine the updating rules with all columns of B, which can be expressed as

B = B̃t(I− aλΣ)+, (2.19)

where B̃t = Bt − a∇l(S,Bt) = [β̃
t

1, β̃
t

2, · · · , β̃
t

n] and

Σ =

1

∥β̃t
1∥2

. . . 0

...
...

...

0 . . . 1

∥β̃t
n∥2

24

is a diagonal matrix. The updating rule (2.19) can be computed efficiently since (I− aλΣ)+

is a diagonal matrix and some diagonal entries may be zero.

2.4 META-LEARNING VIA SGLASSO

In this section, we apply our proposed SGLasso model to meta-learning for auto-

matic configuration recommendations. Suppose that there are m configurations in the

search space ΩA of the investigated algorithm A , namely, ΩA = {ω1,ω2, · · · ,ωm}, then

an m-dimensional classification performance vector on a historical dataset D , denoted by

y = [y1, y2, · · · , ym]⊤, can be obtained, in which each entry yi represents the classification

performance of A instantiated with configuration ωi. Let f be a meta-feature extraction

function, then x = [x1, x2, · · · , xr]⊤ = f(D) is the extracted meta-feature vector of D . How

to collect this metadata will be explained in the next section. Now suppose that there are

n historical datasets D1,D2, · · · ,Dn, then a response matrix Y = [y1,y2, · · · ,yn] and a

meta-feature matrix X = [x1,x2, · · · ,xn] can be obtained, where {xi,yi} is the metadata of

dataset Di.

2.4.1 SGLasso training

The training procedures of SGLasso are summarized in Algorithm 1 where the super-

script j refers to the jth iteration. To show the alternative updating process, we adopt the

notations used in formulae (2.2) and (2.3). The group index vector γ has the same dimension

as x, i.e., γ ∈ Rr, and each entry of γ specifies which group the meta-feature belongs to. In

real scenarios, we can either generate γ randomly or determine it based on the natural group-

ing properties of meta-features. In step 4, we use al =
1
10
min{ 1

∥xl
1⋆∥22

, 1
∥xl

2⋆∥22
, · · · , 1

∥xl
rl⋆

∥22
}, l =

1, 2, · · · , p, for each group, where xl
j⋆, j = 1, 2, ..., rl, is the jth row of Xl, based on the

25

Algorithm 1 SGLasso(Y,X, λ, p, γ, maxL)

Input: Response matrix Y, meta-features X, tuning parameter λ, number of groups p,
group index γ, maximal allowable number of iterations maxL
Output: Estimated effects: W = [W1,W2, · · · ,Wp]

1: Categorize X into p groups {X1,X2, · · · ,Xp} using γ
2: Initialize W0 = [W0

1,W
0
2, · · · ,W0

p], where W0
l ̸= 0, l = 1, 2, · · · , p

3: Initialize Θ0
l = W0

l , l = 1, 2, · · · , p
4: Calculate al, l = 1, 2, · · · , p
5: for j = 1 : maxL do
6: for l = 1 : p do
7: compute gradient: Gj−1

l = ∇l(S−l,W
j−1
l)

8: update W̃j
l ←Wj−1

l − alGj−1
l

9: update Θj
l by Θj

l ← W̃j
l (I− alλΣ)+

10: update the center via a Nesterov step by
Wj

l ← Θj
l +

j
j+3

(Θj
l −Θj−1

l)

11: end for
12: end for

local steepest descent along with the objective function. In step 10, we apply the Nesterov

momentum to accelerate the convergence process.

Within the inner loop, i.e., from step 7 to step 10, the most computationally expensive

part is the calculation of the gradient in step 7. Recall that

∇l(S−l,Wl) = −S−lX
⊤
l +WlXlX

⊤
l

= (−S−l +WlXl)X
⊤
l

= (−Y +WX)X⊤
l ,

(2.20)

which has the computational complexity of O(mnr) wherem,n, and r are the number of can-

didate configurations, number of historical datasets, and number of measures, respectively.

In fact, W usually contains zero columns, which reduces the computational complexity to

O(mnr′) where r′ < r is the number of nonzero columns of W.

26

Figure 2.1: An illustrating example that shows the training process of SGLasso. Y,X and
W represent the historical performance, meta-features, and estimated outcome, respectively.

2.4.2 An illustrating example

We here present an illustrating but simple example to show the effectiveness of our

proposed SGLasso approach. Suppose that there are four historical problems and we extract

the historical performance Y ∈ R10×4 and the meta-features X ∈ R6×4, respectively, see

Figure 2.1. We partition the six meta-features into three groups, namely, γ = [1, 1, 2, 2, 3, 3],

see Figure 2.1 (right) where each color indicates a group ofX. Then we compute al, l = 1, 2, 3,

and we obtain a1 = 0.2990, a2 = 0.2898, and a3 = 0.2257. We set λ = 0.4 and maxL= 200.

When the training is completed under our proposed algorithm, we obtain the estimated W

(in the middle of Figure 2.1). One can observe that W1 is a zero matrix and the first column

of W2 is also zero, while W3 is dense, which indicates that the first three meta-features are

assumed to be redundant and thus will be removed from the model. Taking a closer look into

X, we can see that the first and third rows of X are highly correlated to the fifth and sixth

rows, respectively, and the second and fourth rows are exactly the same. Thus, the proposed

SGLasso successfully identifies the correlated information of meta-features and provides the

desirable solution.

27

2.4.3 Meta-feature selection

Our proposed SGLasso model can control both between-group and within-group sparsity

by appropriately setting the tuning parameter λ. After the maxL iterations, the coefficient

matrix W = [W1,W2, · · · ,Wp] can be obtained, which contains zero columns as expected.

Let v ∈ Rr′ be a vector containing the indices of the nonzero columns of W where r′ < r.

Then v contains the indexes of the selected meta-features. The relationship between the

historical performance and the selected meta-features over the n historical datasets can be

rewritten as

Y = W[:,v]X[v,:], (2.21)

where W[:,v] (X[v,:]) represent the sub-matrices acquired by taking columns (rows) indexed

by the index vector v. Three advantages of meta-feature selection are ready to see: firstly, it

reduces the number of the predictors so the complexity of the model can be largely reduced

[68]; secondly, by removing those irrelevant or redundant meta-features for a specific problem,

the model accuracy has been enhanced; thirdly, we only need to extract the selected meta-

features from a new dataset, yielding the efficiency improvement for the online phase.

2.4.4 Performance prediction

For a new dataset D of interest, we can estimate the performance of algorithm A over

the configuration space ΩA via the trained SGLasso model. We are first to extract the

meta-features of D , denoted as xv = fv(D), where xv ∈ Rr′ , and fv means to extract the

meta-features indexed by v only. Then the estimated performance is given by

yD = W[:,v]xv, (2.22)

28

Figure 2.2: The automatic configuration recommendation architecture based on SGLasso
model, where V (·, ·, ·) is the adopted 10-fold stratified cross-validation, and P is the balanced
classification accuracy.

where yD ∈ Rm and (yD)j, j = 1, 2, · · · ,m, is the predictive performance of ωj in ΩA .

2.5 AUTOMATIC CONFIGURATION RECOMMENDATION

The specific details of our proposed SGLasso-based automatic configuration recommen-

dation architecture are shown in Figure 2.2. This architecture consists of two phases, namely,

the offline (training) phase and the online (recommendation) phase.

2.5.1 Offline phase

The important ingredients of the offline phase are metadata extraction on a collection

of historical datasets and SGLasso training. We next explain how to collect the metadata.

Classification performance evaluation

Suppose there are n historical datasets D1,D2, · · · ,Dn and m configurations, namely,

ΩA = {ω1,ω2, · · · ,ωm}. Then the historical performance matrix Y = [y1,y2, · · · ,yn] ∈

Rm×n can be obtained using 10-fold cross-validation, in which the stratified dataset splitting

is considered to eliminate the influence of class imbalance that commonly existed in the real

datasets. For the same reason, the employed classification performance metric is balanced

29

Algorithm 2 Performance-evaluation(A ,Dj,ω,P)
Input: Classification algorithm A , dataset Dj, hyperparameter configuration ω, classifi-
cation performance metric P
Output: Evaluated performance: yω

1: Stratified dataset split: Dj = {Dj1,Dj2, · · · ,Dj10}
2: for i=1:10 do
3: Dtest = Dji

4: Dtrain = ∪10k ̸=iDjk

5: yi = P(Aω,Dtrain,Dtest)]

6: end for
7: yω = 1

10

∑10
i=1 yi

classification accuracy. The details are elaborated on in the following.

Given a classification algorithm A with a configuration ωi and a dataset Dj, j =

1, 2, · · · , n, we first split Dj into 10 folds evenly as Dj = {Dj1, · · · ,Dj10}. Here, we em-

ploy the stratified cross-validation strategy to ensure every fold contains samples that are

from all the classes when the sizes of classes are unbalanced. Then a fold Dji is selected as

testing set Dtest and the remaining 9 folds are used as the training set Dtrain. Thus we can

obtain the classification performance as

yωi
= P(Aωi

,Dtrain,Dtest),

where P(·, ·, ·) represents the chosen classification performance metric, i.e., balanced clas-

sification accuracy, and yωi
is the performance of Aωi

trained on Dtrain and evaluated on

Dtest. Repeat this procedure ten times such that each fold Dji can be used as Dtest and the

remaining folds can be used as Dtrain. In the end, a 10-dimensional performance vector is

formed. The entry-wise mean of this vector is obtained as the final performance of Aωi
on

dataset Dj. The whole process is depicted in Algorithm 2.

30

Table 2.1: The existing meta-features and the number of (adopted) measures.
Names #measures (adopted)
Statistics&Information-theory (SIT) 73 (54)
Model structure (MS) 24 (24)
Problem complexity (PC) 35 (23)
Landmarking (LM) 14 (14)
Relative landmarking (RLM) 14 (14)
Structural information (SI) 14 (11)
Concept (CON) 8 (7)
Clustering (CLU) 8 (8)
Total 190 (155)

Meta-feature extraction

The extraction of meta-features involves the calculations of the measures defined in each

meta-feature. There are eight types of meta-features that are widely used in meta-learning

in practices [56, 57]. These meta-features focus on different aspects, such as statistics &

information theory (SIT), landmarking (LM), relative landmarking (RLM), model structure

(MS), structural information (SI), classification complexity (PC), clustering (CLU), and

concept (CON). The meta-feature used by our SGLasso is the union of the eight meta-

features.

In our approach, Python package pymfe [23] is used to extract these meta-features, and

then several preprocessing tricks are applied to the raw meta-features: 1) every measure

is normalized into [0, 1] using min-max scaling; 2) some measures that contain only one

value throughout all datasets or contain too many missing values are deleted; 3) we also

delete those repetitive measures that have the exactly the same values and only one is kept.

Therefore, the number of measures of each type of meta-feature adopted in the experiments

is reduced, as shown in the parentheses in Table 2.1.

Here we study the multicollinearity existing in the aforementioned meta-features. Fol-

31

lowing the detection methods suggested by Mansfield et al. [69], we first extract each type

of meta-features from 136 UCI datasets and obtain 136 meta-feature vectors accordingly,

then we compute their correlation matrix separately after the meta-feature preprocessing,

and calculate the eigenvalues of each correlation matrix. We display the results in Figure

2.3, from which one can see that some eigenvalues of the eight meta-features are quite small

(close to 0), which indicates that certain variables of the meta-features are highly correlated.

Therefore, the linear regression model without the meta-feature selection usually does not

generate desirable performance due to the ill-conditioned problem that occurred.

2.5.2 Recommendation

We have shown that the performance of A on a new dataset D can be estimated by

(2.22). Then the promising configurations can be recommended based on the order of the

predictive performance. Detailedly, we sort yD = [yω1 , yω2 , · · · , yωm]
⊤ in descending order

as

[yωi1
, yωi2

, · · · , yωim
],

where yωi1
≥ yωi2

≥ · · · ≥ yωim
. Therefore, the configuration that has the highest predictive

value is recommended for this new dataset D , i.e., ωRecom = ωi1 , or

ωRecom = ΩA {i1}, (2.23)

where ΩA {i1} stands for the i1th element of the configuration space ΩA .

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
0

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
ig

e
n

v
a

lu
e

s

SIT

MS

PC

LM

RLM

SI

CON

CLU 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10

-3

10
-2

10
-1

10
0

Figure 2.3: The problem of multicollinearity existed in the eight types of meta-features.
Their eigenvalues being close to 0 imply that certain variables of meta-features are highly
correlated.

2.6 EXPERIMENTS

In this section, we validate the recommendation effectiveness of our proposed model. We

first present our experimental settings, including adopted datasets, classification algorithm

with its configuration space, as well as various comparative methods with suitable evaluation

metrics, and then present the empirical results and provide further elaboration.

2.6.1 Experimental setup

Datasets: We collect 136 classification datasets from the UCI machine learning repository

[70], in which the smallest dataset contains 88 instances and the maximal sample size is

about 30K; the number of attributes ranges from 3 to 1558, and the number of classes

ranges from 2 to 15. The statistical information in terms of the number of instances, classes,

and dimensions of the adopted datasets can be found in Appendix I. In experiments, 60,

20, and 56 datasets are randomly chosen as the training set, validation set, and testing set,

respectively.

The raw datasets are initially processed by: 1) normalizing each attribute into the range

[-1,1] using the min-max scaling to eliminate the difference among the domains of attributes;

2) removing samples that contain too many missing values and that are repetitive. Also, the

33

attributes of some datasets that contain only one value are deleted; 3)removing the classes

that have less than 10 instances from the datasets before implementing 10-fold stratified

cross-validation.

Classification algorithm and configuration space: we evaluate our proposed configu-

ration recommendation algorithm on the well-known SVM, due to its excellent classification

performance shown in many real applications while its configuration evaluations, especially

for large-scale datasets, are usually quite time-consuming.

Here, we consider SVM using RBF kernel because of the flexibility of kernel parameter

setting. Thus, there are two numerical hyperparameters that should be determined: the

regularization coefficient ‘C’ and the RBF kernel width ‘gamma’. Following the guideline

provided in [71], we preset C ∈ 2−5:1:15 and gamma ∈ 2−15:1:3. These two settings are effective

for many datasets. Therefore, there are 21 × 19 = 399 points in total in the configuration

space of SVM. In the experiment, we adopt the SVM software developed in scikit-learn

library [72].

Comparative baselines: Three meta-learning baselines in literature are evaluated:

1. KNN [43] where Euclidean distance is used as the similarity measurement;

2. Kernel KNN (KKNN) [13, 55], and the performance estimation of a dataset D is given

by yD = 1
S

∑n
j=1 k(xj,xD)yj where S =

∑n
j=1 k(xj,xD), and k(·, ·) is RBF kernel;

3. Multilayer perceptron (MLP) [22, 73]. The network structure is r-100-200-399. We

select sigmoid as the activation function with the L2 regularizer being added to avoid

over-fitting.

We also compare our approach with multivariate Lasso (MLasso), the special case of (2.2)

34

when p = 1, and multivariate sparse-group Lasso (MSGL) [66] to show the superiority of our

feature selection model. All comparative approaches adopt the recommendation strategy

proposed in (2.23).

On the other hand, we compare our method with four search-based algorithms: ran-

dom search (RS), Bayesian optimization (BO), heteroscedastic and evolutionary Bayesian

optimization (HEBO) [34], and Hyperband. During the configuration search process, 10-fold

cross-validation is used to evaluate each set of configurations selected by search algorithms.

Besides, the performance of the default setting of SVM used by scikit-learn 1 is also given

to evaluate our approach.

Evaluation metrics: Three commonly used metrics in meta-learning are chosen for eval-

uating the performance of the recommendation approaches, namely, (average) classification

accuracy rate (CA, ACA), (average) recommendation accuracy rate (RA, ARA), and hit

rate (HR). Their definitions can be found in Appendix III. The ranges of all metrics are [0, 1]

and a larger value means the recommended configuration is closer to the real best one and

thus it is preferred.

2.6.2 Experimental reports and elaborations

Our experimental reports consist of three parts. The first part shows the ability of

meta-feature selection of SGLasso, and the second and the third parts compare the rec-

ommendation capacity between SGLasso and other meta-learning baselines as well as four

classical search algorithms. The best parameters for SGLasso and the comparative baselines

are determined by handout validation, i.e., evaluate the validation set on the model built on

the training set and candidate parameters, the parameter that has the highest total perfor-

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

35

p=8

1(155) 10(92) 20(26) 30(13) 40(9) 50(8)

 (#selected meta-features)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
a

ti
o

SIT

MS

PC

LM

RLM

SI

CON

CLU

p=40

1(155) 10(48) 20(9) 30(7) 40(7) 50(6)

 (#selected meta-features)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
a

ti
o

SIT

MS

PC

LM

RLM

SI

CON

CLU

Figure 2.4: The importance of meta-features when different λ values are applied. The
numbers of the selected meta-features are given in the parenthesizes on the horizontal axis.
A ratio being 0 means the corresponding meta-feature is completely removed from the model.

1 2 3 4 5 6
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
ig

e
n

V
a

lu
e

s

p=8

=1

=10

=20

=30

=40

=50

1 2 3 4 5 6
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
ig

e
n

v
a

lu
e

s

p=40

=1

=10

=20

=30

=40

=50

Figure 2.5: The 6 smallest eigenvalues of the correlation matrix generated by the selected
mete-feature for each λ. Eigenvalues that are close to zero indicate a very high degree of
multicollinearity existed in the meta-feature.

mance, i.e., ACA+ARA+HR, is leveraged, and the results of the testing set evaluated on

the best model are reported.

Effectiveness of meta-feature selection

This subsection studies the SGLasso model based on three important questions. Firstly,

which meta-features are essential for model construction? Secondly, can the problem of

multicollinearity be reduced by meta-feature selection? Thirdly, how the recommendation

performance of SGLasso will be affected by meta-feature selection?

To show the importance of each type of meta-feature for the investigated meta-model,

the tuning parameter λ = {1, 10, 20, 30, 40, 50} is set as an increasing sequence. As we

discussed, a larger λ leads to a higher degree of sparsity of W, and thus fewer measures

36

1 10 20 30 40 50
71.5
72.0
72.5
73.0
73.5
74.0
74.5
75.0
75.5
76.0
76.5

A
C

A
 (

%
)

74
76
78
80
82
84
86
88
90
92
94

A
R

A
/H

R
 (

%
)

p = 8

ACA

ARA

HR

1 10 20 30 40 50
71.5
72.0
72.5
73.0
73.5
74.0
74.5
75.0
75.5
76.0
76.5

A
C

A
 (

%
)

74
76
78
80
82
84
86
88
90
92
94

A
R

A
/H

R
 (

%
)

p = 40

ACA

ARA

HR

Figure 2.6: The recommendation performance fluctuation of SGLasso when different degrees
of sparsity are applied.

would be retained. To train the SGLasso model, we set p = 40, i.e., the eight types of meta-

features are randomly partitioned into 40 groups, and maxL= 300. Here p = 40 is determined

by the grid search and it produces the best recommendation performance as shown in the

following subsection. The results are summarized in Figure 2.4, where each data is the ratio

between the number of the retained measures and the number of the total measures for an

individual meta-feature. The number of the selected meta-features for each λ is given in the

parenthesis below the horizontal axis. For the reason of comparison, we also provide results

when p = 8 where each type of meta-feature is a group to see whether grouping strategy will

affect the model construction of SGLasso.

One can see that for p = 40, no measures are deleted when λ = 1, but there are only 48

of them left when λ = 10, and the amounts are reducing sharply when λ ≥ 20, and there are

only 6 measures when λ = 50. One can also observe that SIT, PC, LM, and RLM seem to

provide the most important predictor variables for our meta-regression problem since others

are totally removed from the model as λ increases. We can draw similar conclusions for

p = 8, which indicates that the grouping strategy applied to the SGLasso model does not

affect the conclusion about which type of meta-feature mainly describes the model. This is

a fine property that evidences the model’s reliability.

37

The second discussion is to see if the variable selection of SGLasso can reduce the

multicollinearity as we showed previously. To save space, we only show the 6 smallest

eigenvalues of the correlation matrix obtained from the selected meta-features for each λ in

Figure 2.5. Again, we show the results of both p = 40 and p = 8. As expected, variables are

severely correlated when λ = 1 as many eigenvalues are close to zero; however, this situation

is alleviated as a smaller proportion of measures is selected as λ increases, which means our

SGLasso can effectively delete those redundant and correlated measures and thus improve

the model performance. In addition, the tendencies of p = 40 and p = 8 shown in Figure 2.5

are consistent, which again suggests the model stability of SGLasso. On the other hand, by

comparing Figure 2.3 (λ = 1) and Figure 2.5, we can see that the combined meta-features

are more severely correlated than every single type of meta-feature because more eigenvalues

are zero (we show only 6 of them but the total number is 20), which implies that there are

similar measures cross different meta-features and thus feature selection can remove these

redundancies as expected.

Next, we show how the recommendation performance of SGLasso is affected when meta-

feature selection is performed. The results of ACA, ARA, and HR are depicted in Figure

2.6, from which one can observe that feature selection indeed improves the recommendation

performance: when all measures are applied (λ = 1), SGLasso has the mediocre performance

with an ACA of 72.92%, an ARA of 77.31%, and an HR of 76.79% for p = 40, and has the

performance with an ACA of 71.83%, an ARA of 75.92%, and an HR of 76.79% for p = 8;

however, it has the smallest ACA (ARA, HR) of 74.83% (85.43%, 82.14%) after the feature

selection for p = 40, and has the smallest ACA (ARA, HR) of 75.43% (86.56%, 83.92%)

after the feature selection for p = 8. On the other hand, the optimal recommendation

38

Table 2.2: The parameter settings for SGLasso, MLasso, MSGL, KNN, KKNN, and MLP.
Approach Parameter Usage Range References

SGLasso
p number of groups {2,3,· · · ,50}
λ sparsity regularization coefficient {1,10,20,30,40,50} −

MLasso λ sparsity regularization coefficient {1,10,20,30,40,50} [67]

MSGL
p number of groups {2,3,· · · ,50}
λ sparsity regularization coefficient {1,2,· · · ,10,20,· · · ,100} × 10−4 [66]
λG L2 regularization coefficient {1,2,· · · ,10,20,· · · ,100} × 10−4

KNN K number of neighbors {1,2,· · · ,50} [43]
KKNN γ parameter of RBF kernel {1e-3,1e-2,1e-1,1e0,1,2,3,4,5,1e1,2e1,5e1,1e2} [13, 55]
MLP λ L2 regularization coefficient {1e-7,1e-6,1e-5,1e-4,1e-3,1e-2} [22, 73]

Table 2.3: Comparisons on ACA, ARA, and HR between MLasso, MSGL, KNN, KKNN, MLP, and SGLasso. The maximal
value of each row is highlighted.

Metrics SGLasso MLasso MSGL KNN KKNN MLP
ACA 76.16 74.77 75.07 74.74 75.11 74.70
ARA 89.97 85.95 87.22 85.54 87.00 85.31
HR 92.86 85.71 89.89 80.36 85.71 85.18

Table 2.4: The Wilcoxon Signed-Rank tests between MLasso, MSGL, KNN, KKNN, MLP, and SGLasso. Here“>” represents
“is better than”. p-Values that are larger than 0.05 are underlined.

Alternative hypothesis win/tie/lose p-value (CA) p-value (RA)
SGLasso>MLasso 36/4/16 0.002 0.013
SGLasso>MSGL 31/5/20 0.088 0.000
SGLasso>KNN 31/3/22 0.052 0.024
SGLasso>KKNN 35/3/18 0.007 0.025
SGLasso>MLP 38/0/18 0.001 0.018

39

occurs when λ = 10 for both grouping strategies, where ACA (ARA, HR) mounts to 76.16%

(89.97%, 92.86%) for p = 40 and 76.02% (88.64%, 89.29%) for p = 8. As a comparison, the

ACA of the real optimal configurations on the testing problems is 78.70%.

Comparisons with meta-learning baselines

This section discusses the recommendation capacity of SGLasso compared to other

meta-learning baselines, such as KNN, KKNN, and MLP, as well as Lasso-based approaches,

namely, MSGL and MLasso. The parameter search space of each approach is listed in Table

2.2. The outcomes of ACA, ARA, and HR are summarized in Table 2.3, and the comparisons

on each single dataset are shown in Figure 2.7. Notice that the comparative baselines (KNN,

KKNN, and MLP) use the complete meta-features, i.e., no feature selection is imposed as

SGLasso does.

From Table 2.3, one can observe that: 1) meta-learning-based recommendation can

choose the applicable configurations since the achieved lowest ACA, ARA, and HR are

74.70% (MLP), 85.31% (MLP), and 80.36% (KNN), respectively, which proves the promising

ability of meta-learning for automatic configuration selection; 2) Our method, SGLasso,

outperforms other approaches with an ACA of 76.16%, an ARA of 89.97%, and an HR of

92.86%. MSGL wins the second place, KKNN, MLasso and MLP take the tertiary, fourth,

and fifth place, respectively, while KNN performs the worst; 3) SGLasso outweighs MLasso

with a large gap, which implies the importance of the grouping strategy added into the

model.

By looking into the performance difference on each dataset (Figure 2.7), one can see

that SGLasso overpasses or performs equally with other baselines on most of the datasets,

40

and this conclusion is more evident in terms of RA and HR, which testifies that CA alone

is not enough to evaluate the recommendation performance. To be specific, SGLasso has a

RA that is larger than 80% on 48 over 56 cases and has a RA that is larger than 90% on 37

over 56 cases, and these statistics are 42/28, 45/32, 39/32, 41/30, 37/27 for MLasso, MSGL,

KNN, KKNN, and MLP, respectively; our method hits on 52 over 56 cases, and MLasso,

MSGL, KNN, KKNN, and MLP respectively hit on 48, 50, 45, 48, and 47 out of 56 cases.

All approaches fail to hit on the dataset madelon-valid, and only MSGL hits on dataset

fertility and spiral.

In addition, to show if SGLasso performs statistically better than other methods, we

adopt Wilcoxon signed-rank tests at a 0.05 significant level. The null hypothesis is that

SGLasso performs worse than or equally with MLasso (or MSGL, KNN, KKNN, MLP). We

test this on both CA and RA, and the testing results are displayed in Table 2.4, where the

p-values that are less than 0.05 means that the null hypothesis is rejected and we accept the

alternative hypothesis, that is, SGLasso outweighs significantly. We also give the statistics

about on how many datasets SGLasso wins, ties, and loses. One can see that SGLasso

is significantly better than MLasso, KKNN, and MLP on both CA and RA, and better

than MSGL and KNN on RA. Although SGLasso fails to overpass MSGL and KNN on CA

statistically, the p-values are close to 0.05. It is worth mentioning that KNN has a distinct

manner in Table 2.3 and Table 2.4, i.e., KNN has the worst HR but it has high p-values.

This is due to KNN having an unstable performance, i.e., it performs well on some datasets

but it also does not generate satisfying recommendations on other datasets because of the

difficulty of the selection of parameter K.

41

drug-cocaine

drug-alcohol

wine-quality-red

wine-quality-white

spiral

m
adelon-valid

contrac

ilpd
flags

fertility

student-evaluation

breast-cancer

TA-evaluations

glass
st-germ

an-num
eric

bc-wpbc

bc-coim
bra

liver
online-shoppers

steelplates-faults

pim
a
crowdsourced-m

apping

heart

sports-article

urban-land-cover

gam
m

a-telescope

m
am

m
ographic

parkinsons

m
usk-clean 1

Z-Alizadeh-sani

vehicle

wall-following

cryotherapy

m
usk-clean

st-australian

credit-approval

waveform

st-landsat

shuttle-test

student-m
ath

forest-types

HTRU

spam
base

seeds

audit-risk

chess-krvkp

m
onks-3

uspst

m
ushroom

im
age-segm

entation

derm
atology

occupancy-detection

bc-diagnostic

grid-stability

authentication

autism
-adult

10
20
30
40
50
60
70
80
90

100

C
A

 (
%

)

SGLasso vs MtL Baselines

MLasso MSGL KNN KKNN BPNN SGLasso

m
adelon-valid

seeds

spiral

fertility

student-evaluation

breast-cancer

wine-quality-red

TA-evaluations

ilpd
glass

heart

cryotherapy

bc-coim
bra

liver
student-m

ath

drug-alcohol

bc-wpbc

st-germ
an-num

eric

drug-cocaine

wine-quality-white

pim
a
flags

gam
m

a-telescope

audit-risk

sports-article

Z-Alizadeh-sani

chess-krvkp

parkinsons

spam
base

m
onks-3

crowdsourced-m
apping

online-shoppers

im
age-segm

entation

urban-land-cover

vehicle

m
am

m
ographic

HTRU

occupancy-detection

wall-following

st-landsat

st-australian

contrac

derm
atology

steelplates-faults

waveform

shuttle-test

forest-types

m
usk-clean 1

bc-diagnostic

grid-stability

m
ushroom

uspst

m
usk-clean

credit-approval

authentication

autism
-adult

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

SGLasso vs MtL Baselines

MLasso MSGL KNN KKNN BPNN SGLasso

fertility

m
adelon-valid

seeds

spiral

audit-risk

authentication

autism
-adult

vehicle

bc-wpbc

bc-coim
bra

bc-diagnostic

breast-cancer

uspst

chess-krvkp

contrac

credit-approval

crowdsourced-m
apping

cryotherapy

derm
atology

drug-alcohol

drug-cocaine

grid-stability

flags
forest-types

st-germ
an-num

eric

gam
m

a-telescope

glass
heart

wall-following

HTRU

ilpd
pim

a
im

age-segm
entation

st-landsat

liver
waveform

student-m
ath

m
am

m
ographic

m
onks-3

m
ushroom

m
usk-clean 1

m
usk-clean

occupancy-detection

online-shoppers

TA-evaluations

parkinsons

steelplates-faults

shuttle-test

spam
base

sports-article

st-australian

urban-land-cover

student-evaluation

wine-quality-red

wine-quality-white

Z-Alizadeh-sani

10
20
30
40
50
60
70
80
90

100

H
R

 (
%

)

SGLasso vs MtL Baselines

MLasso MSGL KNN KKNN BPNN SGLasso

Figure 2.7: Comparisons on CA (top), RA (middle), and HR (bottom) between MLasso, MSGL, KNN, KKNN, MLP, and
SGLasso on each single testing dataset.

42

Comparisons with search algorithms

In this section, we compare the effectiveness between SGLasso and search algorithms

when the same time budget is allowed. The maximal time budget provided for search

algorithms on each dataset is the time consumed by SGLasso for online applications, i.e.,

meta-feature extraction and performance estimation. Here we exclude the time of offline

training since this can be done whenever needed. Notice that we set λ = 10 and p = 40, so

only 48 out of 155 measures are extracted during the online phase. In a contrast, KNN is

also compared to these search algorithms where KNN needs more time budget to extract the

whole 155 measures. We select KNN because it has larger p-values in the statistical tests as

given in Table 2.4. The comparative results are summarized in Table 2.5, and the details on

each dataset are depicted in Figure 2.8 and 2.9. Because of the randomness, we repeat RS

and Hyperband three times, and the average performance is reported.

From Table 2.5, one can see that: 1) the existing default configuration does not produce

satisfying performance with an ACA of 72.59%, an ARA 77.09%, and an HR of 75.00%, which

verifies the necessity of hyperparameter tuning; 2) RS, Hyperband, BO, and HEBO have

the similar performance that is slightly better than the default; 3) there is no doubt that

SGLasso outweighs both default setting and search algorithms with a wide gap. Looking

into the per-dataset comparisons (Figure 2.8), we find that there are some cases where

search algorithms surpass SGLasso, e.g., madelon-valid, breast-cancer, heart, and et

al. These datasets have small dimensions, namely the small number of instances (attributes

and classes), in which search algorithms are certainly more effective. As expected, SGLasso

shows the superiority on those large-scale datasets, see shuttle-test, online-shopper,

43

m
adelon-valid

seeds

spiral

fertility

student-evaluation

breast-cancer

wine-quality-red

TA-evaluations

ilpd
glass

heart

cryotherapy

bc-coim
bra

liver
student-m

ath

drug-alcohol

bc-wpbc

st-germ
an-num

eric

drug-cocaine

wine-quality-white

pim
a
flags

gam
m

a-telescope

audit-risk

sports-article

Z-Alizadeh-sani

chess-krvkp

parkinsons

spam
base

m
onks-3

crowdsourced-m
apping

online-shoppers

im
age-segm

entation

urban-land-cover

vehicle

m
am

m
ographic

HTRU

occupancy-detection

wall-following

st-landsat

st-australian

contrac

derm
atology

steelplates-faults

waveform

shuttle-test

forest-types

m
usk-clean 1

bc-diagnostic

grid-stability

m
ushroom

uspst

m
usk-clean

credit-approval

authentication

autism
-adult

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

SGLasso vs Search Algorithms

Default RS Hyperband BO HEBO SGLasso

fertility

m
adelon-valid

seeds

spiral

audit-risk

authentication

autism
-adult

vehicle

bc-wpbc

bc-coim
bra

bc-diagnostic

breast-cancer

uspst

chess-krvkp

contrac

credit-approval

crowdsourced-m
apping

cryotherapy

derm
atology

drug-alcohol

drug-cocaine

grid-stability

flags
forest-types

st-germ
an-num

eric

gam
m

a-telescope

glass
heart

wall-following

HTRU

ilpd
pim

a
im

age-segm
entation

st-landsat

liver
waveform

student-m
ath

m
am

m
ographic

m
onks-3

m
ushroom

m
usk-clean 1

m
usk-clean

occupancy-detection

online-shoppers

TA-evaluations

parkinsons

steelplates-faults

shuttle-test

spam
base

sports-article

st-australian

urban-land-cover

student-evaluation

wine-quality-red

wine-quality-white

Z-Alizadeh-sani

0
10
20
30
40
50
60
70
80
90

100

H
R

 (
%

)

SGLasso vs Search Algorithms

Default RS Hyperband BO HEBO SGLasso

Figure 2.8: Comparisons on RA (top), and HR (bottom) between default, RS, Hyperband, BO, HEBO, and SGLasso on each
single testing dataset.

Table 2.5: Comparisons on ACA, ARA, and HR between default, RS, Hyperband, BO, HEBO, and SGLasso (KNN). The
maximal value of each row is highlighted.

Metrics default RS Hyperband BO HEBO SGLasso RS Hyperband BO HEBO KNN
ACA 72.59 73.19 73.12 73.31 73.09 76.16 72.26 74.99 75.95 74.60 74.74
ARA 77.09 82.76 81.52 80.78 78.15 89.97 79.66 86.37 89.57 82.96 85.54
HR 75.00 75.00 76.79 76.79 78.57 92.86 80.36 80.36 89.29 82.14 80.36

44

drug-cocaine, etc., where cross-validation is time-consuming during each search. We also

report the Wilcoxon signed-rank tests among the investigated approaches in Table 2.6, from

which we can conclude that the superiority of our method over default, RS, Hyperband, BO,

and HEBO is statistically significant.

However, the conclusions regarding KNN are different to some degree. Since the al-

lowable time budget is increasing on each dataset, the performance of search algorithms has

been improved, especially for BO, HEBO, and Hyperband. In Table 2.5, KNN outperforms

default and RS, and it is inferior to Hyperband slightly, but BO outweighs KNN with a

noticeable difference. The statistical tests in Table 2.6 also show that KNN fails to beat

search algorithms, and BO is even significantly better than KNN. In Figure 2.9, it is clear to

see that KNN is inferior to search algorithms on many datasets. These conclusions suggest

that meta-learning without meta-feature selection is not efficient when the time-consuming

extraction of meta-features is involved.

2.7 CONCLUDING REMARKS

The effective meta-learning mainly depends on the quality of meta-features, and thus

the meta-feature selection appears to be critical for algorithm learning under the framework

of machine learning. In this paper, by integrating features and algorithm learning as a whole,

we develop a Lasso-type model, SGLasso, for the feature selection with the application to

the automatic configuration recommendation. The main goal is to capture the intrinsic

relationship between the dataset characteristics and the empirical performance through the

development of a meta-learner, which can identify key meta-features and remove redundant

or irrelevant ones. In the experiments, eight types of state-of-the-art meta-features are

45

student-evaluation

Z-Alizadeh-sani

ilpd
parkinsons

m
adelon-valid

TA-evaluations

fertility

st-germ
an-num

eric

breast-cancer

wine-quality-white

wine-quality-red

flags
seeds

drug-cocaine

bc-wpbc

spiral

sports-article

credit-approval

st-australian

drug-alcohol

heart

cryotherapy

liver
online-shoppers

occupancy-detection

im
age-segm

entation

pim
a
bc-coim

bra

steelplates-faults

forest-types

m
am

m
ographic

audit-risk

waveform

contrac

vehicle

m
onks-3

bc-diagnostic

grid-stability

chess-krvkp

crowdsourced-m
apping

urban-land-cover

gam
m

a-telescope

m
usk-clean 1

glass
uspst

spam
base

wall-following

m
ushroom

student-m
ath

m
usk-clean

derm
atology

HTRU

authentication

autism
-adult

shuttle-test

st-landsat

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

KNN vs Search Algorithms

Default RS Hypeband BO HEBO KNN

drug-cocaine

fertility

ilpd
m

adelon-valid

TA-evaluations

parkinsons

seeds

spiral

student-evaluation

wine-quality-white

Z-Alizadeh-sani

audit-risk

authentication

autism
-adult

vehicle

bc-wpbc

bc-coim
bra

bc-diagnostic

breast-cancer

uspst

chess-krvkp

contrac

credit-approval

crowdsourced-m
apping

cryotherapy

derm
atology

drug-alcohol

grid-stability

flags
forest-types

st-germ
an-num

eric

gam
m

a-telescope

glass
heart

wall-following

HTRU

pim
a
im

age-segm
entation

st-landsat

liver
waveform

student-m
ath

m
am

m
ographic

m
onks-3

m
ushroom

m
usk-clean 1

m
usk-clean

occupancy-detection

online-shoppers

steelplates-faults

shuttle-test

spam
base

sports-article

st-australian

urban-land-cover

wine-quality-red

0
10
20
30
40
50
60
70
80
90

100

H
R

 (
%

)

KNN vs Search Algorithms

Default RS Hyperband BO HEBO KNN

Figure 2.9: Comparisons on RA (top) and HR (bottom) between default, RS, Hyperband, BO, HEBO, and KNN on each single
testing dataset.

Table 2.6: The Wilcoxon Signed-Rank tests between default, RS, Hyperband, BO, HEBO, and SGLasso (KNN).
Hypothesis win/tie/lose p-value (CA) p-value (RA) Hypothesis win/tie/lose p-value (CA) p-value (RA)

SGLasso>default 45/1/10 0.000 0.000 KNN>default 39/1/16 0.003 0.002
SGLasso>RS 37/0/19 0.028 0.026 KNN>RS 24/1/31 0.694 0.706
SGLasso>Hyperband 39/0/17 0.003 0.001 KNN>Hyperband 25/1/30 0.436 0.460
SGLasso>BO 35/4/17 0.026 0.021 KNN>BO 19/4/33 0.965 0.965
SGLasso>HEBO 34/2/20 0.002 0.003 KNN>HEBO 25/3/28 0.821 0.787

46

adopted by our SGLasso to recommend configurations for SVM. The proposed SGLasso has

shown superior performance that outperforms the existing meta-learning methods as well

as the well-known search-based algorithms, such as random search, Bayesian optimization,

and Hyperband. In addition, our approach is flexible and is ready to apply to other similar

multivariate multiple regression problems where feature selection is involved with meta-

learning .

47

CHAPTER 3

NONLINEAR META-FEATURE SELECTION

3.1 INTRODUCTION

Regarding feature selection, the least absolute shrinkage and selection operator, known

as Lasso, has been widely studied. As an embedded method, its superior advantage over

other wrapper or filter approaches lies in that the feature selection process is inlaid in the

regression model training so that the computation burden can be alleviated. Quite often, the

relationship between features and responses appears to be nonlinear in nature, and capturing

the nonlinearity generally improves the performance for feature selection and regression

estimation. Nevertheless, most of the existing Lasso models have been developed under the

framework of linear approaches (see, e.g., a recent survey [74]). Kernelized Lasso, which is

a nonlinear setting, can be used to perform the feature selection in the high-dimensional

Reproducing Kernel Hilbert Space. However, the existing kernel Lasso approaches are not

designated for meta-learning (see, e.g., [75, 76, 77] and references therein), and lack of the

essential automatic learning process which is required to integrate the feature selection, the

model, and the algorithm learning to form a meta-learner.

In this chapter, we develop a multivariate kernel group Lasso (KGLasso) approach that

serves as both a meta-learner and meta-feature selector for the hyperparameter configuration

recommendation under the framework of meta-learning. The significant difference between

our proposed method and the current existing recommendation approaches lies in that our

proposed KGLasso is able to automatically select the principal meta-features as well as the

instances during the process of meta-learner training so that the most desirable configura-

48

tion recommendations can be obtained. More specifically, we develop a KGLasso regression

model on the metadata of historical datasets in which the meta-features are used as the pre-

dictors and the historical performance serves as the responses. To implement the KGLasso

model, we establish an effective algorithm by constructing a corresponding auxiliary func-

tion so that convergence can be guaranteed. The trained model has the capacity to identify

the critical meta-features and instances on which the performance of configurations for a

new dataset can be based, boosting both efficiency and accuracy for recommendation tasks.

Further, embedding with the proposed KGLasso, a meta-learning-based system is built for

the configuration recommendation. In the experiments, we demonstrate its effectiveness in

recommending configurations for SVM with desirable performance. Also, the extensive com-

parisons with other state-of-the-art recommendation algorithms as well as search algorithms

over 120 UCI datasets further confirm the superiority of our KGLasso approach. Our main

contributions in this chapter are summarized below.

1. A meta-feature selection model, called KGLasso, is developed under the nonlinear re-

gression framework. It has the capacity to identify both meta-features and instances au-

tomatically. Our kernelization setting allows us to capture the correlated non-linearity

between meta-features and instances. The algorithm associated with KGLasso is shown

to be convergent mathematically.

2. Under the framework of meta-learning, a meta-learning-based system for configuration

recommendation is established by embedding with the proposed KGLasso and the

obtained system can provide competent configuration recommendation effectively.

3. Extensive experiments are conducted to demonstrate the effectiveness of our proposed

49

recommendation system, including the configuration recommendation for SVM, as well

as comparisons with various search algorithms with standard evaluation metrics.

3.2 RELATED WORK

Motivated by the kernel support-vector regression, among others, Roth first discussed

a generalized Lasso regression for a simple univariate regression problem [75]

min
α∈Rn×1

1

2
∥y −Kα∥22 + λ∥α∥1,

here y = [y1, y2, · · · , yn]⊤ ∈ Rn×1 are the responses and X = [x1,x2, · · · ,xn] ∈ Rr×n are the

predictors, where n is the number of training instances and r is the dimension of features, and

K ∈ Rn×n is the kernel matrix generated on the predictor variables X, and Kij = k(xi,xj)

where k(·, ·) is a pre-defined kernel function. Its formulation focuses on selecting the training

instances and is not applicable to feature selection. On the other hand, a feature-scaling

kernel was proposed for the feature selection in [78, 79] in the form of

kϑ(xi,xj) = k(xi ∗ ϑ,xj ∗ ϑ),

where ∗ denotes the standard Hardmard product, and ϑ ∈ {0, 1}r is a binary scaling pa-

rameter vector that specifies each of the features being selected or not. However, solving

for ϑ could be an NP-hard problem since the objective function usually is nonconvex and

discontinuous in terms of ϑ.

To address the aforementioned issue, Li and Yang et al. [80] proposed a feature-wise

kernel Lasso method, called feature vector machine, by introducing the following optimiza-

50

tion:

min
α∈Rr×1

1

2
∥ϕ(y)−

r∑
i=1

αiϕ(xi⋆)∥22 + λ∥α∥1,

where ϕ : Rr×1 → Rd×1 is a given nonlinear mapping, and xi⋆ ∈ Rn×1 is the ith feature (not

instance) of X. To predict the response of a new instance, it requires minimizing another

optimization problem (see (6) in [80]) whose solution may be difficult to obtain when complex

kernel functions are adopted. Another feature-wise selection method, called HSIC Lasso, was

proposed by Yamada and Jitkrittum et al. [77] as

min
α∈Rr×1

1

2
∥L̄−

r∑
i=1

αiK̄
i∥2F + λ∥α∥1,

where L̄ ∈ Rn×n is the centered kernel matrix of responses y, and K̄i ∈ Rn×n is the centered

kernel matrix of the ith feature (row) of X. However, the estimation of a new instance

response is lacking, which prevents the connection from learning. Also, a sparse additive

model for the feature selection in [76, 81] is proposed in the following form:

min
αi∈Rdn×1

1

2
∥y −

r∑
i=1

Ψiαi∥22 + λ

r∑
i=1

∥Ψiαi∥2,

where Ψi ∈ Rn×dn is the matrix generated by a set of basis functions {ψi1, ψi2, · · · , ψidn} on

the ith feature (row) of X and Ψi(j, l) = ψi,l(Xij). The sparse additive model requires the

nonlinearity in the model to be additive and thus it belongs to a quite special case.

Other nonlinear Lasso models such as LCPHR [82], SLR-L1/2 [83], and LPR [84] apply

only to very specific situations. For example, LCPHR is only applicable for survival data,

LPR assumes the underlying data follows the Poisson distribution, and SLR-L1/2 is used for

51

gene (feature) selection in cancer classification. These models commonly adopt logarithms

or exponents to achieve nonlinear learning that only fits a certain type of growth problem.

Most critically, all aforementioned approaches are constructed under the framework of uni-

variate regression, which is quite restrictive and different from the multivariate cases in which

variable interactions play important roles and must be taken into account.

Now it comes to our motivation for solving the configuration recommendation problem.

First, the relationship between features and instance responses tends to be nonlinear, and

thus the kernelization Lasso approach is a good candidate to capture the non-linearity. Sec-

ond, features of high dimensional datasets are multiple, which implies that a multivariate

approach deems to be necessary. Third, it is essential to develop an efficient learning process

that can integrate the dataset, the (configuration recommendation) model, and algorithm

learning together to provide the most competent configuration recommendation automati-

cally under the general framework of machine learning. To the best of our knowledge, such

an approach is not available in the current literature.

3.3 MULTIVARIATE KERNEL GROUP LASSO

Suppose that we are given n paired samples

{(x1,y1), (x2,y2), · · · , (xn,yn)} (3.1)

for a specific multivariate regression problem where xi ∈ Rr×1 is the predictor vector and

yi ∈ Rm×1 is the response. Denote Y = [y1,y2, · · · ,yn] ∈ Rm×n and X = [x1,x2, · · · ,xn] ∈

Rr×n, and X is further row-wisely partitioned into p (1 ≤ p ≤ r) disjoint groups, i.e.,

X = [X1;X2; · · · ;Xp] where Xi ∈ Rri×n, i = 1, 2, · · · , p, and
∑p

i=1 ri = r. Aiming at meta-

52

learning via a multivariate regression approach, we propose the following multivariate kernel

group Lasso (KGLasso) model:

min
Θ

F (Θ) =
1

2
∥Y −

p∑
i=1

WiKi∥2F + λ

p∑
i=1

∥Wi∥2,1, (3.2)

where Θ = [W1,W2, · · · ,Wp] ∈ Rm×pn is the model parameter with Wi ∈ Rm×n, i =

1, 2, · · · , p, and Ki = ϕ⊤(Xi)ϕ(Xi) ∈ Rn×n is the kernel matrix.

Here p is a parameter with a positive integer range. It often takes the number of the

existing grouping of meta-features, but it also can be used for other random groupings when

more subtle groups become necessary under our framework. The first term in (3.2) is the

generalized kernel Lasso regression, while the second term is the regularization, and the

adopted norm ∥ · ∥2,1 is used to enforce the sparsity solution of Wi. The sparse solution

of (3.2) allows us to identify the most important features with optimization. The model

(3.2) can be viewed as the generalized instance-wise Lasso when p = 1 and the feature-wise

kernelized Lasso when p = r. Solving (3.2) is not a trivial task since the objective function

is not convex and the procedure requires some special treatment. We will present the details

next.

3.3.1 Alternating iteration

To solve the minimization of (3.2), we adopt the block-coordinate descent method. We

fix Wi for all i but one and then solve for Wl, l ̸= i alternatively during each iteration.

Therefore, without loss of generality, we can rewrite (3.2) as

F (Wl) =
1

2
∥R−l −WlKl∥2F + λ∥Wl∥2,1 + C−l, (3.3)

53

where R−l = Y −
∑p

i ̸=l WiKi and C−l =
∑p

i ̸=l∥Wi∥2,1 are constants. Before we move on,

we use short notations in (3.3) for the purpose of simplicity and rewrite it as

F (B) =
1

2
∥H−BK∥2F + λ∥B∥2,1 + C, (3.4)

where B = Wl, H = R−l, K = Kl, and C = C−l.

The gradient of (3.4) with respect to B is given by

∇F (B) = −HK⊤ +BKK⊤ + λU, (3.5)

where U = [u1,u2, · · · ,un] and

uj =

bj

∥bj∥2 , if ∥bj∥2 ̸= 0,

zj, if ∥bj∥2 = 0,

and j = 1, 2, · · · , n,

where ∥zj∥2 ≤ 1. Therefore, if ∥bj∥2 ̸= 0, then bj can be updated via

bj =

[
Hk⊤

j⋆ −
n∑

i ̸=j

bi∥ki⋆∥22

](
∥kj⋆∥22 +

λ

∥bj∥2

)−1

; (3.6)

otherwise, if ∥bj∥2 = 0, it satisfies

∥∥∥Hk⊤
j⋆ −

n∑
i ̸=j

bi∥ki⋆∥22
∥∥∥
2
≤ λ. (3.7)

Similarly, the explicit solution (3.6) may not produce desirable outcomes, as indicated in [65],

due to the numeric instability caused in the scenario ∥kj⋆∥2 → 0. The instability analysis

54

can also refer to in Appendix IV. We will address this issue next.

3.3.2 Auxiliary function

Instead of solving B directly from (3.4), we resort to solving its auxiliary function

constructed below. Without loss of generality, we consider the jth column bj of B only and

ignore the constant term in our following discussion, leading to the loss function

F̂ (bj) :=
1

2
∥H−BK∥2F + λ∥bj∥2. (3.8)

We further denote L(bj) :=
1
2
∥H−BK∥2F . Suppose that K has nonzero rows, i.e., 1

∥kj⋆∥22
, j =

1, 2, · · · , n, is well-defined, then we have the following theorem.

Theorem 2. Given a constant vector bt
j, we define

G(bj,b
t
j) := L(bt

j) + (bj − bt
j)

⊤∇L(bt
j) +

1

2aj
∥bj − bt

j∥22 + λ∥bj∥2, (3.9)

where

0 < aj ≤
1

∥kj⋆∥22
. (3.10)

Then we have

1. ∇L(bt
j) = (−HK⊤ +BtKK⊤)j;

2. G(bj,b
t
j) ≥ F̂ (bj), G(bt

j,b
t
j) = F̂ (bt

j).

The function G(·, ·) is called the auxiliary function in literature (see, e.g. [85]). The

proof of Theorem 2 is given in Appendix V. Now we seek b⋆
j that minimizes G(bj,b

t
j),

55

namely, b⋆
j = argminbj

G(bj,b
t
j). The gradient of (3.9) with respect to bj is given by

∇G(bj,b
t
j) = ∇L(bt

j) +
1

aj
(bj − bt

j) + λuj. (3.11)

By letting ∇G(bj,b
t
j) = 0 and denote b̃t

j = bt
j − aj∇L(bt

j), one can have

bj = b̃t
j

(
1 +

ajλ

∥bj∥2

)−1

(3.12)

if ∥bj∥2 ̸= 0, or

∥b̃t
j∥2 ≤ ajλ (3.13)

if ∥bj∥2 = 0. It can be shown that (3.12) and (3.13) are equivalent to (3.6) and (3.7),

respectively, when aj =
1

∥kj⋆∥22
.

Now we take the L2-norm for the both sides of (3.12) with some derivations, one can

see

∥bj∥2 =
(
∥b̃t

j∥2 − ajλ
)
+
. (3.14)

Plug (3.14) into (3.12) and simplify the fraction, we arrive at

bj = b̃t
j

(
1− ajλ

∥b̃t
j∥2

)
+

. (3.15)

As we have shown in Chapter 2, (3.15) is the unique solution of (3.12). Combining the n

columns of B, then the updating criterion for B in (3.4) can be described by

B = B̃t(I− λΣD)+, (3.16)

56

where B̃t = [b̃t
1, b̃

t
2, · · · , b̃t

n] = Bt − (−HK⊤ + BtKK⊤)D, D = diag([a1, a2, · · · , an]), and

Σ = diag([1
∥b̃t

1∥2
, 1
∥b̃t

2∥2
, · · · , 1

∥b̃t
n∥2

]). Here diag(x) represents a diagonal matrix with diagonal

elements x.

Now we recover (3.16) without using the short notation in (3.3), yielding

Wl = W̃t
l(I− λΣlDl)+, (3.17)

where W̃t
l = Wt

l − (−R−lK
⊤
l + Wt

lKlK
⊤
l)Dl, Dl = diag([al1, a

l
2, · · · , aln]) with alj ∈

(0, 1
∥(kl)j⋆∥22

], and Σl = diag([1
∥(w̃t

l)1∥2
, 1
∥(w̃t

l)2∥2
, · · · , 1

∥(w̃t
l)n∥2

]).

The following theorem shows the convergence of our algorithm. The proof can be

found in Appendix V as well. Therefore, by alternatively updating coefficient matrices

Wl, l = 1, 2, · · · , p, a local minima of (3.2) can be obtained.

Theorem 3. Given Wi, i ̸= l, are fixed as constant matrices, under the updating rule given

in (3.17), the loss function (3.2) is non-increasing during each alternatively updating.

3.4 META-LEARNING VIA KGLASSO

In this section, we show how to apply our proposed KGLasso approach for the automated

meta-feature selection as well as configuration recommendation under the framework of meta-

learning. The general architecture embedded with KGLasso is depicted in Figure 3.1, which

consists of offline and online stages respectively. We next explain the details.

3.4.1 Offline phase

The main tasks in the offline stage include metadata extraction and the proposed

KGLasso learning.

57

Figure 3.1: The automated configuration recommendation architecture based on the pro-
posed KGLasso model associated with meta-learning functionality.

Metadata extraction

Let D1,D2, · · · ,Dn be the n collected historical datasets from which n pairs of metadata,

(xj,yj), j = 1, 2, · · · , n, are extracted, in which xj ∈ Rr×1 is the meta-features of Dj, and

yj ∈ Rm×1 is the classification performance evaluated on Dj over the search space ΩA . The

Python library pymfe [23] is designed for extracting the state-of-the-art meta-features and

therefore it is adopted in our system, while 10-fold stratified cross-validation is leveraged to

evaluate the performance P of a configuration ωs ∈ ΩA :

yωs =
1

10

10∑
i=1

P(Aωs ,∪10
i ̸=qD

(i)
j ,D (q)

j), s = 1, 2, · · · ,m,

where P(·, ·, ·) represents the performance achieved when Aωs is trained on ∪10i ̸=qD
(i)
j and

evaluated on D (q)
j . D (i)

j , i = 1, 2, · · · , 10, is a 10-fold partition of dataset Dj.

In general, the intrinsic relationship between meta-feature and classification perfor-

mance often appears to be nonlinear, and capturing the underlying nonlinearity usually

benefits the accuracy of recommendation. In addition, selecting the most explainable meta-

58

features is also vital for the improvement of both efficiency and effectiveness. Therefore,

we develop a new meta-leaner, KGLasso, to fulfill both automated feature selection and

configuration recommendation, which is formulated as

F (Θ) =
1

2
∥Y −

p∑
i=1

WiKi∥2F + λ

p∑
i=1

∥Wi∥2,1, (3.18)

where Y = [y1,y2, · · · ,yn] ∈ Rm×n is the performance matrix, Ki = ϕ⊤(Xi)ϕ(Xi), and

X = [x1,x2, · · · ,xn] = [X1;X2; · · · ;Xp] ∈ Rr×n is the grouped meta-features, and Θ =

[W1,W2, · · · ,Wp] is the model parameter.

KGLasso learning

As we stated before, we adopt the block-coordinate descent algorithm to update the co-

efficient matricesWi, i = 1, 2, · · · , p. The updating procedures are summarized in Algorithm

3. To illustrate the alternative updating process, we use the notations defined in (3.2). In

step 1, we can group the meta-features based on their natural grouping properties, such as

each type of meta-features being a group or other strategies as needed in the applications.

The RBF (radial basis) kernel function,

k(x1,x2) = exp{−∥x1 − x2∥22
σ

}, σ > 0,

is leveraged in our model because the selection of the kernel parameter σ is flexible and

the kernel is within 0 and 1. In practice, the unified setting of σ in various groups may

cause biases: when groups have different numbers of meta-features, i.e., ri ̸= rj, k(x1,x2)

with a higher dimension of x tends to be smaller given the same σ across the p groups.

59

Algorithm 3 KGLasso

Input: Performance matrix Y, meta-features X, kernel function k(·, ·), tuning parameter
λ, number of groups p, maximal allowable number of iterations maxL
Output: Model parameter Θ = [W1,W2, · · · ,Wp]

1: Categorize X into p disjoint groups [X1;X2; · · · ;Xp]
2: Compute kernel matrices Ki of Xi using k(·, ·)
3: Initialize Θ0 = [W0

1,W
0
2, · · · ,W0

p], where W0
i ̸= 0, i = 1, 2, · · · , p

4: Calculate Di = diag(ai1, a
i
2, · · · , ain), i = 1, 2, · · · , p.

5: for t = 1 : maxL do
6: for i = 1 : p do
7: compute gradient ∇L(R−i,W

t−1
i)

8: update W̃t−1
i ←Wt−1

i −∇L(R−i,W
t−1
i)Di

9: update Wt
i ← W̃t−1

i (I− λΣiDi)+

10: end for
11: end for

In experiments, we set σ first, then σi in group i is determined by σi = σri, i = 1, 2, · · · , p,

which can effectively reduce the potential biases. Also, we set aij =
1

10∥(ki)j⋆∥22
, j = 1, 2, · · · , n,

in our algorithm which is obtained by grid search within the given range of aij in Theorem

2. In step 7, ∇L(R−i,W
t−1
i) = −R−iK

⊤
i +Wt−1

i KiK
⊤
i is used.

Meta-feature and instance selection

Based on the updating rule in step 9, each Wj can be column-wise sparse. If Wj = 0,

a zero matrix, then the corresponding meta-features are supposed to be least important and

thus are excluded from the investigated recommendation problem; if some columns of Wj

are zero, then the corresponding training instances are assumed to be less important and

thus are deleted from the model. With appropriate (λ, σ) setting, our KGLasso model not

only can select the principal meta-features and instances for a specific meta-learning task

but also obtain a highly sparse solution that improves the training efficiency with simplifying

complexity.

Let υi, i = 1, 2, · · · , p, be the index vector that specifies the nonzero columns of Wi (if

60

Wi = 0, then υi is an empty set), then our trained KGLasso model can be written as

Y =

p∑
i=1

Wi[:,υi]Ki[υi, :], (3.19)

where Wi[:,υi] (Ki[υi, :]) represents the submatrix acquired by taking columns (rows) in-

dexed by υi.

3.4.2 Online phase

During the online phase, we need to estimate the empirical performance of configura-

tions using the trained KGLasso meta-learner and make a configuration recommendation.

For a new dataset D , the performance of A over the search space ΩA can be estimated only

by the selected meta-features and instances. Denote xD as the meta-feature of D and it is

partitioned into p groups xD = [xD
1 ;x

D
2 ; · · · ;xD

p], applying the same grouping principle used

on the training stage, the performance of ΩA on dataset D can be estimated by

ypred =

p∑
i=1

Wi[:,υi]ki[υi, :],

where ki = ϕ⊤(Xi)ϕ(x
D
i) ∈ Rn×1,Xi is the meta-features of the ith group of training datasets,

defined in Section III. In practice, we just need to calculate the entries of kj indexed by υj

and thus we are only required to extract those meta-feature groups where υj is not empty.

The configuration that has the highest predictive performance is recommended to the new

dataset D , i.e., ωrecom = argmaxω[y
pred
ω1

, ypredω2
, · · · , ypredωm

], here ypredωi
∈ ypred is the predictive

performance of configuration ωi from the search space ΩA . Since the optimal configuration

61

on a dataset usually is not unique, we thus recommend multiple configurations, i.e.,

ωrecom = {ωj1 ,ωj2 , · · · ,ωjc} (3.20)

where 1 ≤ c≪ m and

ypredωj1
≥ ypredωj2

≥ · · · ≥ ypredωjm
.

We call ωjl as the l
th-order recommendation.

3.5 EXPERIMENTS

In this section, we report the empirical results of our proposed KGLasso method in

terms of the effectiveness of hyperparameter recommendation. We here first introduce the

configurations of the meta-learning recommendation system, including the employed clas-

sification datasets, meta-features, classification algorithm, and its hyperparameter search

space.

3.5.1 Experimental configurations

Classification datasets

120 classification datasets are collected from the well-known UCI machine learning

repository in our experiments, and 60 of them are randomly picked as historical datasets for

model training, and the other 60 datasets are leveraged as testing datasets. The datasets

have a wide range of distributions about the number of instances (attributes and classes)

and detailed information is given in Appendix I. New classification datasets can be further

added to our system without restrictions.

62

Table 3.1: The adopted meta-features and the numbers of measures.
Names (Abbr.) #meta-features
Statistics&Information theory (SIT) 54
Model structure (MS) 24
Landmarking (LM) 14
Relative landmarking (RLM) 14
Problem complexity (PC) 23
Structural information (SI) 11
Clustering (CLU) 8
Concept (CON) 7
United (UNI) 155

Meta-features

There are eight types of meta-features [23, 57] that are widely utilized by researchers,

each of them characterizes different aspects of a classification dataset, namely statistics and

information theory, classification complexity, structural information, (relative) landmarking,

concept, clustering, and model structure. We extract these meta-features using the pymfe

library, and each type of meta-feature is categorized into one group (thus p = 8). In the

implementation, each meta-feature is normalized into [0, 1] via min-max scaling to eliminate

the domain differences that existed among the meta-features. In addition, some repetitive

meta-features across diverse groups are removed at the beginning. The number of the total

adopted meta-features in each type is summarized in Table 3.1.

Classification algorithm and hyperparameter space

We consider the hyperparameter recommendation problem for the well-known support

vector machine (SVM) [86] to promote its efficiency in real applications. Specifically, we

adopt SVM with the RBF kernel because of the flexibility of kernel parameter selection.

Therefore, there are two tuning parameters of RBF-SVM, namely, regularization coefficient

‘C’ and kernel width ‘σsvm’. As the settings leveraged in many related work [71, 14], we set C

63

∈ {2−5, 2−4, · · · , 215} and σsvm ∈ {2−15, 2−14, · · · , 23}. Thus, the search space of RBF-SVM

has 21 × 19 = 399 hyperparameters, i.e., |ΩA | = 399. We implement the function SVC

developed in scikit-learn machine learning library [72] in our experiments.

Evaluation metrics

We evaluate the performance of each approach using four metrics: classification accu-

racy rate (CA), recommendation accuracy rate (RA), hit rate (HR), and normalized dis-

counted cumulative gain (NDCG), respectively. The first three are widely considered in

meta-learning [15, 16, 87], while the last one is commonly used in recommender system

studies [88]. Definitions of the metrics can be found in Appendix III.

3.5.2 Experimental results and analyses

The experimental reports are given in four parts. The first and the second parts il-

lustrate the capacity of meta-feature and instance selection of KGLasso and its parameter

sensitivity, and the third and the fourth reports compare the recommendation performance

of KGLasso to the state-of-the-art meta-learners and search algorithms. For each testing

dataset, the top-3 configurations are recommended, i.e., c = 3 in (3.20), and their average

performance is presented.

Capacity of meta-feature and instance selection

There are two tuning parameters for KGLasso, namely, the RBF-kernel width σ and

the regularization parameter λ, and their search ranges are given in Table 3.2. The optimal

tuning parameter pair (λ⋆, σ⋆) = (6, 0.009) is determined by grid search. The evaluation

metric of the grid search is the mean of CA, RA, HR, i.e., (CA+RA+HR)/3. To show the

influence of tuning parameters on the meta-feature and instance selection, we illustrate the

64

KGLasso

1 2 3 4 5 6 7 8 9 10

Regularization parameter

0

10

20

30

40

50

60

#
re

ta
in

e
d

 i
n

s
ta

n
c
e

s

SIT

MS

PC

LM

RLM

SI

CON

CLU

KGLasso

1 2 3 4 5 6 7 8 9 10
RBF-Kernel width (10

-3
)

0

10

20

30

40

50

60

#
re

ta
in

e
d

 i
n

s
ta

n
c
e

s

SIT

MS

PC

LM

RLM

SI

CON

CLU

Figure 3.2: The number of retained meta-features and instances in our hyperparameter recommendation experiments. The
y-axis shows the number of retained instances and the x-axis shows the various applied model parameters, i.e., λ (left) and σ
(right). A zero means the corresponding meta-feature is not selected by the model.

Table 3.2: Settings for the tuning parameters of KGLasso, KNN, KKNN, MLP, and WarmCF.
Approach Parameters Usage Range

KGLasso
λ L2,1 regularization parameter {1,2,· · · ,10}
σ parameter of RBF kernel {1e-3,2e-3,· · · ,1e-2}

KNN K number of neighbors {1,2,· · · ,50}
KKNN σ parameter of RBF kernel {1e-3,1e-2,1e-1,1e0,1,2,3,4,5,1e1,2e1,5e1,1e2}

MLP
λ L2 regularization parameter {1e-7,1e-6,1e-5,1e-4,1e-3,1e-2}
s Activation function Sigmoid

neural struc Neural network structure r-100-300-m

WarmCF
λ L2 regularization parameter {1e-7,1e-6,1e-5,1e-4,1e-3,1e-2}
ϵ keeping ratio of random corruption {0.1,0.2,· · · ,1}
r number of the latent variables {10,20,30,40,50}

65

number of the retained instances of each group as the changing of tuning parameters in

Figure 3.2 where σ is fixed as 0.009 on the left while λ is fixed as 6 on the right.

From Figure 3.2 (left), one can observe that the regularization parameter λ has a

significant impact on the meta-feature and instance selection, as suggested by (3.15). When

σ is fixed, the number of the retained instances in each group is decreasing as the increase

of λ. Specifically, no meta-features are removed and most of the instances in each group

are kept as well when λ = 1; nevertheless, PC and RLM meta-features are deleted from the

model after λ = 4 and the model tends to be stable after λ = 5 where SIT, PC, and RLM

meta-features are assumed to be redundant and are thus excluded from the model. Only a

small amount of instances are selected in most of the remaining groups except CLU, which

evidences the high degree of sparsity obtained by our KGLasso and also shows the dominant

role of the CLU meta-feature.

The impact of σ on the selection task is more complicated. Given λ is properly fixed,

as shown in Figure 3.2 (right), we do not observe a monotonous tendency when σ is varying,

i.e., the numbers of the retained instances in eight groups are not decreasing or increasing,

but we still can draw some similar conclusions. For example, an extremely sparse model

is obtained and the principal meta-features are MS, LM, SI, CON, and CLU; especially,

at least half of the instances are selected for CLU meta-feature under each σ. Besides, σ

seems to determine more on the instance rather than the meta-feature selection when λ

is fixed. In summary, by setting (λ, σ) appropriately, KGLasso is able to select the most

essential meta-features and instances. We next elaborate on how promising configurations

are recommended.

We illustrate the fluctuation of recommendation performance when tuning parameters

66

1 2 3 4 5 6 7 8 9 10

Regularization parameter

68

69

70

71

72

73

74

75

76

A
C

A
 (

%
)

68

71

74

77

80

83

86

89

A
R

A
&

H
R

 (
%

)

ACA

ARA

HR

1 2 3 4 5 6 7 8 9 10

RBF-Kernel width (10
-3

)

72

73

74

75

A
C

A
 (

%
)

78

80

82

84

86

88

90

A
R

A
&

H
R

 (
%

)

ACA

ARA

HR

Figure 3.3: The influence of model parameters on the recommendation performance of
KGLasso.

Table 3.3: Comparisons on ACA, ARA, and HR between CLU, CON, SI, LM, MS, SIT, PC,
RLM, UNI, and KGLasso. The best value of each row is highlighted.
Metrics CLU CON SI LM MS SIT PC RLM UNI KGLasso
ACA 73.91 72.64 73.03 73.55 72.94 73.46 72.64 72.74 73.54 74.70
ARA 86.13 81.21 85.67 85.22 82.44 86.08 83.48 80.81 84.70 88.49
HR 86.67 78.89 86.67 83.33 82.22 85.00 82.78 76.67 81.11 88.33

(λ, σ) are varying in Figure 3.3 to demonstrate the impact of meta-features and instances

selection on the recommendation performance. Similarly, σ is fixed to 0.009 on the left

figure while λ is fixed to 6 on the right one. As we can see from Figure 3.3 (left), when

all types of meta-features are kept (λ = 1), KGLasso has a mediocre performance with

an ACA of 68.91%, an ARA of 71.51%, and an HR of 68.89%. As more instances are

removed from the model (λ = 2, 3), the performance has a significant improvement (73.50%,

84.72%, and 82.78% on ACA, ARA, and HR). The optimal performance is obtained when

λ = 6 where three types of meta-features are deleted and most of the instances within each

remaining group are excluded. On the other hand, σ also has a considerable influence on

the recommendation outcomes (Figure 3.3 right), which indicates the importance of instance

selection in determining the recommendation performance, but the fluctuation range is less

than that of λ.

67

Importance of meta-feature selection

In this experiment, our goal is to show the necessity of meta-feature selection. To fulfill

this purpose, we compare our KGLasso with the generalized Lasso, i.e., the special case of

KGLasso when p = 1, where every single type of meta-feature given in Table 3.1, including

the united meta-feature (UNI), has been adopted. The comparisons in terms of ACA, ARA,

and HR are summarized in Table 3.3, in which the first five columns are the results of the

selected meta-features, and the middle three columns are the results of the removed meta-

features. One can observe that 1) the best performance is obtained by KGLasso with an

ACA of 74.70%, an ARA of 88.49%, and an HR of 88.33%, while the second performance

is achieved by CLU, and the worst outcomes are generated by CON and RLM. UNI has

medium performance but the extraction of all meta-features could be time-consuming. These

results suggest the effectiveness of our KGLaso approach and the importance of meta-feature

selection; 2) within the five selected meta-features, CLU has the best performance, which

is coincident with the results shown in Figure 3.2, i.e., CLU has the largest amount of the

retained instances so it is the most important one; 3) most importantly, the performance

of SIT, PC, and RLM is close to that of CLU, MS, and CON, respectively, but SIT, PC,

and RLM are removed by our model. Evidently, our KGLasso approach is able to capture

the similarity among the groups of meta-features via learning and therefore exclude those

redundant or nonsignificant ones. This is the central goal of our proposed method.

Moreover, to show if KGLasso is statistically better than other cases, we adopt Wilcoxon

signed-rank tests [89] at a significance level of 0.05. The null hypothesis is that KGLasso does

not outperform significantly. We test this on both CA and RA and the testing p-values are

68

Table 3.4: The Wilcoxon Signed-Rank test results between CLU, CON, SI, LM, MS, SIT,
PC, RLM, UNI, and KGLasso. Here “>” represents “is better than”. p-Values that are
larger than 0.05 are underlined.

Hypothesis win/tie/lose p-value (CA) p-value (RA)
KGLasso>CLU 32/5/23 0.226 0.201
KGLasso>CON 40/4/16 0.001 0.000
KGLasso>SI 35/4/21 0.048 0.108
KGLasso>LM 34/4/22 0.042 0.084
KGLasso>MS 35/6/19 0.003 0.003
KGLasso>SIT 36/4/20 0.091 0.121
KGLasso>RLM 38/4/18 0.004 0.003
KGLasso>PC 36/3/21 0.017 0.036
KGLasso>UNI 34/5/21 0.018 0.026

summarized in Table 3.4 where a p-value that is smaller than 0.05 means we reject the null

hypothesis and accept the alternative hypothesis, i.e., the superiority of KGLasso is signifi-

cant. In addition, we also present the number of datasets where KGLasso wins/ties/loses in

each comparison in Table 3.4. We can see that, except for CLU and SIT, KGLasso outweighs

other meta-features statistically on CA, and is significantly better than CON, MS, RLM,

PC, and UNI on RA. Although the difference between CLU and KGLasso is not statisti-

cally significant, KGLasso still improves the overall performance with a large gap as given

in Table 3.3. Our approach formulation by (3.2) can be seen as a combination of various

meta-features (i.e., multiple-feature learning), so its recommendation performance can be

effectively attained by leveraging all the underlying critical meta-features.

Comparisons with meta-learning baselines

Based on our formulation, we compare the proposed KGLasso approach to four

regression-based meta-learning baselines for configuration recommendation, namely, KNN

[16], kernel KNN (KKNN) [13], multi-layer Perceptron (MLP) [73], and warm-started col-

laborative filtering (WarmCF) [18]. The involved tuning parameters of each baseline as well

69

drug-cocaine

drug-alcohol

drug-am
phetam

ines

wine-quality-white

spiral

yeast

seism
ic-bum

ps

happiness-survey

planning-relax

ilpd
abalone

haberm
an-survival

flags
turkiye-student-eval

TA-evaluations

parkinson-speech

m
adelon

fertility

Q
SAR-bioconcentration

creditcard-clients

liver
glass

online-shoppers

spectf-heart

crowdsourced-m
apping

sports-article

heart

protein

m
b-splice

lym
phography

m
am

m
ographic

vertebral-colum
n-2

ecoli
gam

m
a-telescope

phishing-website

st-australian

biodegradation

st-vehicle

forest-types

chessboard

cardiotocography

cb-vowel

CNAE-9

wilt
m

onks-1

Com
puting-weight

tic-tac-toe

scale
car

m
onks-2

uspst

chess-krvkp

m
ushroom

m
onks-3

wireless-localization

electrical-grid-stability

audit-trial

acute-Inflam
m

ations

authentication

m
ice-protein

10
20
30
40
50
60
70
80
90

100

C
A

 (
%

)

KNN KKNN MLP WarmCF KGLasso

drug-cocaine

spiral

seism
ic-bum

ps

ilpd
haberm

an-survival

turkiye-student-eval

planning-relax

TA-evaluations

liver
lym

phography

parkinson-speech

drug-am
phetam

ines

m
onks-1

happiness-survey

heart

flags
spectf-heart

Q
SAR-bioconcentration

drug-alcohol

sports-article

chessboard

m
am

m
ographic

fertility

wine-quality-white

cb-vowel

st-australian

scale
tic-tac-toe

wilt
vertebral-colum

n-2

m
b-splice

abalone

yeast

gam
m

a-telescope

online-shoppers

CNAE-9

cardiotocography

forest-types

m
adelon

creditcard-clients

protein

wireless-localization

ecoli
phishing-website

crowdsourced-m
apping

Com
puting-weight

glass
st-vehicle

m
onks-3

chess-krvkp

car
biodegradation

uspst

electrical-grid-stability

m
onks-2

audit-trial

m
ushroom

acute-Inflam
m

ations

authentication

m
ice-protein

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

KNN KKNN MLP WarmCF KGLasso

Figure 3.4: Comparisons on CA (top) and RA (bottom) between KNN, KKNN, MLP, WarmCF, and KGLasso on each single
testing dataset.

1 2 3 4 5 6 7 8 9 10

NDCG@

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

N
D

C
G

KGLasso

KNN

KKNN

MLP

WarmCF

Figure 3.5: The comparisons on NDCG between KNN, KKNN, MLP, WarmCF, and KGLasso.

70

Table 3.5: Comparisons on ACA, ARA, and HR between KNN, KKNN, MLP, WarmCF,
and KGLasso. The maximal value of each row is highlighted. The ACA of the real optimal
configuration on the testing datasets is 77.58%.

Metrics KGLasso KNN KKNN MLP WarmCF
ACA 74.70 73.01 72.74 73.87 72.38
ARA 88.49 82.97 82.56 84.76 80.09
HR 88.33 81.11 81.11 79.53 76.19

as their search ranges are given in Table 3.2 and the best parameters are determined by

grid search. The meta-features employed by each baseline are the united one, i.e., UNI,

since they do not have the meta-feature selection mechanism as KGLasso does. The overall

comparative results are given in Table 3.5, and the comparison on each dataset is depicted

in Figure 3.4.

From Table 3.5, one can observe that our KGLasso outweighs the comparative baselines

with a wide gap, with an ACA of 74.70%, an ARA of 88.49%, and an HR of 88.33%. MLP

has the secondary performance in terms of ACA and ARA (73.87% and 84.76%) but its HR

(79.53%) is inferior to KNN and KKNN. This is because MLP has good recommendations

on partial testing datasets but it performs mediocrely on other datasets. KNN and KKNN

have similar tertiary performance. Although KKNN is a nonlinear version of KNN, it does

not show any superiority in this experiment. WarmCF has the worst performance, with an

ACA of 72.38%, an ARA of 80.09%, and an HR of 76.19%. For the per-dataset comparison

(Figure 3.4), the differences on CA are subtle while they are more evident on RA. We

can see that KGLasso has the best RA on most of the datasets, and the superiority on

some datasets, such as planning-relax, drug-alcohol, and madelon, is significant. On

the other hand, MLP evidently overpasses other approaches on datasets drug-cocaine,

spiral, and harberman-survival, but it also has the worst recommendations on datasets

71

Table 3.6: The Wilcoxon Signed-Rank tests between KNN, KKNN, MLP, WarmCF, and
KGLasso. Here “>” represents “is better than”. p-Values that are larger than 0.05 are
underlined.

Alternative hypothesis win/tie/lose p-value (CA) p-value (RA)
KGLasso>KNN 40/5/15 0.000 0.000
KGLasso>KKNN 43/3/14 0.000 0.000
KGLasso>MLP 37/1/22 0.008 0.006
KGLasso>WarmCF 37/1/22 0.000 0.001

such as happiness-survey, tic-tac-toe, and madelon, which again shows its unstable

performance.

In addition, we report the comparisons on NDCG to show the recommendation poten-

tiality of each approach in Figure 3.5. We set 10 positions for calculating NDCG@ρ, i.e.,

ρ = [1, 2, · · · , 10]. It is clear to see that KGLasso has an average NDCG of 0.85 at each

position, which is dramatically better than that of the comparative baselines, in which the

NDCG under each position is varying from 0.78 to 0.80. The higher NDCG value implies

that the first ρ-order recommendations of KGLasso are closer to the real first ρ optimal

configurations than the recommendations generated by other baselines, thus our proposed

approach is quite competent across different orders of recommendations.

Finally, we report the statistical tests, as we leveraged in the previous discussion, in

Table 3.6, and we can see that all p-values under both CA and RA are less than 0.05, so

the superiority of our KGLasso against KNN, KKNN, MLP, and WarmCF is statistically

significant.

Comparison with search algorithms

With the same allocated time budget, we compare the online recommendation perfor-

mance of KGLasso to the performance of four popular search algorithms, namely, random

search (RS) [7], hyperband (HB) [8], Bayesian optimization (BO) [6], and heteroscedastic

72

Table 3.7: Comparisons on ACA, ARA, and HR between DEF, BO, HEBO, HB, RS, and
KGLasso. The maximal value of each row is highlighted.

Metrics DEF BO HEBO HB RS KGLasso
ACA 69.00 64.66 57.57 66.37 65.72 74.50
ARA 70.67 63.31 42.41 65.13 64.65 87.64
HR 65.00 62.78 37.78 60.00 61.11 86.67

Table 3.8: The Wilcoxon Signed-Rank test results between DEF, BO, HEBO, HB, RS, and
KGLasso. Here “>” represents “is better than”. p-Values that are larger than 0.05 are
underlined.

Hypothesis win/tie/lose p-value (CA) p-value (RA)
KGLasso>DEF 45/3/12 0.000 0.000
KGLasso>BO 49/2/9 0.000 0.000
KGLasso>HEBO 49/2/9 0.000 0.000
KGLasso>HB 49/1/10 0.000 0.000
KGLasso>RS 49/2/9 0.000 0.000

evolutionary BO (HEBO) [34] which is the winner of NeurIPS 2020 competition. Notice

that we only need to extract the selected meta-features from the new dataset during the

online stage, i.e., CLU, CON, MS, LM, and SI. To avoid randomness, each search algorithm

is repeated three times and their average is reported with 10-fold cross-validation being em-

ployed to evaluate the configurations. The performance of the default configurations (DEF)

provided by scikit-learn is also compared. For simplicity, we only consider the first-

order recommendation of our approach. The overall results are given in Table 3.7 and the

per-dataset comparisons are shown in Figure 3.6.

As one can see that four search algorithms do not have satisfactory performance. The

best performance results are from HB, where the ACA, ARA, and HR are 66.37%, 65.13%,

and 60.00%, respectively. HEBO does not show its superiority in this comparison and it

obtains the worst outcomes with an ACA of 57.57%, an ARA of 42.41%, and an HR of

37.38%. In contrast, our KGLasso greatly improves the recommendation performance with

an ACA of 74.50%, an ARA of 87.64, and an HR of 86.67%, and the differences with four

73

drug-cocaine

drug-alcohol

drug-am
phetam

ines

wine-quality-white

spiral

planning-relax

yeast

seism
ic-bum

ps

happiness-survey

ilpd
abalone

haberm
an-survival

flags
turkiye-student-eval

parkinson-speech

TA-evaluations

Q
SAR-bioconcentration

m
adelon

fertility

creditcard-clients

liver
glass

online-shoppers

spectf-heart

crowdsourced-m
apping

sports-article

heart

protein

m
b-splice

m
am

m
ographic

lym
phography

vertebral-colum
n-2

ecoli
gam

m
a-telescope

phishing-website

st-vehicle

st-australian

biodegradation

forest-types

chessboard

cardiotocography

m
onks-1

cb-vowel

CNAE-9

wilt
Com

puting-weight

tic-tac-toe

scale
uspst

m
onks-2

car
m

ushroom

chess-krvkp

wireless-localization

m
onks-3

electrical-grid-stability

audit-trial

acute-Inflam
m

ations

authentication

m
ice-protein

10
20
30
40
50
60
70
80
90

100

C
A

 (
%

)

DEF BO HEBO HB RS KGLasso

ilpd
seism

ic-bum
ps

drug-cocaine

spiral

haberm
an-survival

planning-relax

turkiye-student-eval

m
onks-1

wine-quality-white

parkinson-speech

lym
phography

liver
Q

SAR-bioconcentration

TA-evaluations

happiness-survey

drug-alcohol

heart

drug-am
phetam

ines

flags
chessboard

spectf-heart

sports-article

m
am

m
ographic

fertility

cb-vowel

vertebral-colum
n-2

cardiotocography

scale
tic-tac-toe

CNAE-9

m
b-splice

forest-types

abalone

creditcard-clients

st-australian

online-shoppers

wilt
gam

m
a-telescope

yeast

ecoli
m

adelon

protein

Com
puting-weight

phishing-website

st-vehicle

glass
wireless-localization

crowdsourced-m
apping

chess-krvkp

uspst

biodegradation

car
m

onks-2

electrical-grid-stability

m
ushroom

audit-trial

m
onks-3

acute-Inflam
m

ations

authentication

m
ice-protein

0
10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

DEF BO HEBO HB RS KGLasso

Figure 3.6: Comparisons on CA (top) and RA (bottom) between DEF, BO, HEBO, HB, RS, and KGLasso on each single
testing dataset.

74

search algorithms are significant by the statistical tests given in Table 3.8, where KGLasso

overpasses search algorithms on 49 out of 60 cases and the p-values on both CA and RA are

pretty small. By taking a closer look at the per-dataset comparisons in Figure 3.6, a similar

conclusion can be drawn. Only in a few cases where search methods outweigh KGLasso

slightly, e.g., lymphography, heart, and forest-types. This is due to the small dimensions

of these datasets (see Appendix I) and the cross-validations can be done efficiently from

which the search algorithms benefit as expected. On the other hand, we notice that the

default hyperparameter setting even outperforms search algorithms in this scenario with

an ACA of 69.00%, an ARA of 70.67%, and an HR of 65.00%, but it is still inferior to

our approach with a noticeable difference. By embedding the meta-feature selection via

automated self-learning, our proposed KGLasso model demonstrates the superior ability in

configuration recommendation, compared to various standard approaches.

3.6 CONCLUDING REMARKS

In this chapter, we develop a new hyperparameter recommendation approach embedded

with meta-learning capacity in performing both meta-feature and instance selection auto-

matically. The meta-learning is accomplished through our proposed KGLasso model which

is constructed by a generalized multivariate kernel group Lasso approach. Our KGLasso

setting is capable of capturing the underlying nonlinear characteristics between the fea-

tures and the responses, including the univariate kernel Lasso as a special case under our

proposed framework. The alternating minimization algorithm developed for the proposed

KGLasso model is shown to be effective and robust via mathematical validation. The devel-

oped hyperparameter recommendation integrates the underlying datasets, the model, and

75

the learning algorithm together to achieve the meta-learning task. The extensive experi-

ments are based on the 120 UCI datasets and SVM for the configuration recommendation

and demonstrate the superior performance of our proposed approach in terms of the com-

mon meta-learning baselines. Various comparisons with existing search algorithms such as

random search, hyperband, and Bayesian optimization confirm the significant benefits of the

proposed automated meta-learning approach.

76

CHAPTER 4

SPATIAL STRUCTURE PRESERVING

4.1 INTRODUCTION

In the current literature on meta-learning, the performance spaces of algorithms are

usually instantiated as a vector. Although this framework is easy to implement with many

existing models, the topographical structure of the performance space and the correlation

existing in adjacent entries, which are critical characteristics for datasets, may be discarded.

In this chapter, we attempt to structure the performance data into a multi-dimensional array

whose dimension is governed by the number of different types of hyperparameters so that

relevant information can be preserved. For example, when we consider the performance of

RBF support-vector machine (SVM), which has two hyperparameters ‘C’ and ‘Gamma’, on

the UCI classification dataset firm-teacher-clave-direction (see Figure 4.1), where the

accuracy is determined by ten-fold cross-validation. The right figure shows the performance

distribution when it is organized as a vector while the left figure shows that in a two-

dimensional tensor (matrix). Clearly, the left figure presents the geometrical structure of

the performance space and contains correlated information that reflects the data’s spatial

characteristic features.

In this chapter, we formulate the hyperparameter configuration recommendation task

as a low-rank tensor completion (LRTC) problem. LRTC is a generalization of matrix

completion [90] for high-dimensional arrays and it has been widely applied to both real

applications and theoretical studies such as in image and video inpainting [91, 92, 93] and

image denoising [94] where the low-rank property of matrices or tensors is the key of success.

77

20

30

40

50

A
c
c
u

ra
c
y
 (

%
)

60

Gamma

70

C

80

(C,Gamma)
20

30

40

50

60

70

80

A
c
c
u
ra

c
y
 (

%
)

Figure 4.1: An example of performance data organization of RBF-SVM, which has two
hyperparameters ‘C’ and ‘Gamma’, in tensor format (left) and in vector format (right) on the
UCI problem firm-teacher-clave-direction.

The common approaches for LRTC are Tucker decomposition [95], CP decomposition [96],

trace norm-based approaches [97, 92], and other variants [94, 93]. Similar to collaborative

filtering, in the context of LRTC, we treat the unknown evaluations of the new problem

as missing values and try to impute them based on the characteristics of existing entries.

The motivation results from configurations usually lie in lower-dimensional space due to

their mutual correlations. In terms of the LRTC setting, the proposed approach can further

utilize the sparse performance data generated from historical problems in the offline stage,

which in turn improves the overall efficiency. The significant difference between LRTC and

collaborative filtering lies in that LRTC takes the spatial structure of the search space into

account, providing more relevant information existing within the performance spaces. To the

best of our knowledge, this is the first study in meta-learning under the tensor completion

framework.

More specifically, we first acquire the performance data, which is organized as a higher-

order (sparse) tensor, from a set of historical problems. Then suitable configurations on the

new problems are evaluated to form a testing tensor. To infer the missing entries of the testing

tensor, we design LRTC algorithms adopting the sum of the nuclear norm (SNN) [92] model.

78

Besides LRTC, we further establish a meta-based model via coupled matrix factorization

(CMF), bridging the meta-features and performance over the historical problems such that

the recommendations can be conducted directly through meta-features. Finally, a strategy

combining LRTC and CMF for recommendation is proposed to overcome the shortness of

LRTC resulting from the insufficient known entries. Based on the proposed algorithms, a

configuration recommendation system is designed for the purpose of various applications.

To verify the effectiveness of our approaches, we choose the SVM as well as deep neural

networks such as ViT [98, 99] and ResNet [100] as the objective classifiers. The experimental

results show that our approaches are able to generate more promising configurations than

other existing meta-learning methods, showing the merits of our proposed approaches. In

summary, our contributions to this chapter are given below.

• We formulate the configuration recommendation problem as a low-rank tensor comple-

tion (LRTC) task, and establish two corresponding algorithms under the nuclear norm

model setting;

• A CMF-based configuration recommendation approach is developed, without requiring

configuration evaluations for new problems;

• A development for integrating LRTC and CMF into a new algorithm is established to

gain better recommendation capacity under the proposed framework;

• The effectiveness of configuration recommendation of the proposed approaches for

SVM, ViT [98], and ResNet [100] is demonstrated and verified by comparing with

existing approaches.

79

4.2 PRELIMINARY

Low-rank tensor completion (LRTC), suggested by its name, aims to predict the missing

entries of a tensor via the existing entries while keeping its low-rank characteristics. For a

given incomplete tensor T , the optimization problem of LRTC is formulated as following:

min
Y

rankT (Y)

s.t. Y ∗M = T ∗M,

(4.1)

where rankT (·) indicates a specific tensor rank, such as CP rank, Tucker rank, and Tensor-

train rank [101], etc., and “ ∗ ” implies the Hadamard product. M is a binary tensor, called

a mask, that has the same dimension as T , and it is defined as

Mi1,··· ,id =

1, Ti1,··· ,id ̸= 0,

0, Ti1,··· ,id = 0.

(4.2)

Especially, when Tucker rank is adopted, the objective function in (4.1) can be rewritten

as

min
Y

g(rankt(Y))

s.t. Y ∗M = T ∗M,

(4.3)

where g is a function integrating Tucker rank rankt(Y) = (rank(Y(1)), · · · , rank(Y(d))) and

Y(i), i = 1, 2, · · · , d, represents the unfolding matrix of tensor Y along mode i. The widely

deployed one is a linear combination, i.e., g(rankt(Y)) =
∑d

i=1 αi·rank(Y(i)) where
∑d

i=1 αi =

80

1 are predefined coefficients.

With theoretical supports in the matrix completion problem, we know that the mini-

mization of the rank of a matrix can be conducted by minimizing its nuclear norm, leading

to a sum of nuclear norm (SNN) model [92] given by

min
Y(i),i=1,··· ,d

d∑
i=1

αi∥Y(i)∥∗

s.t. Y(i) ∗M(i) = T(i) ∗M(i),

(4.4)

where M(i) is the unfolding matrix ofM along mode i.

When Y(i) has a low-rank decomposition Y(i) = WiHi where Wi ∈ Rni×ri and Hi ∈

Rri×
∏d

j ̸=i nj , we then have ∥Y(i)∥∗ = minWi,Hi
(∥Wi∥2F + ∥Hi∥2F), see e.g., [102]. Thus, the

optimization model can be formulated as

min
Wi,Hi,Y(i)

d∑
i=1

αi

[
1

2
∥Y(i) −WiHi∥2F +

βi
2
(∥Wi∥2F + ∥Hi∥2F)

]

s.t. Y(i) ∗M(i) = T(i) ∗M(i),

(4.5)

where βi’s are the coefficients that control the degree of penalty on the factor matrices Wi

and Hi in the objective function. Notice that model (4.5) is degraded to a probabilistic

matrix factorization (PMF) model [48] if αd = 1, and αi = 0, i = 1, 2, · · · , d− 1.

4.3 KERNEL LOW-RANK TENSOR COMPLETION

This section presents our four sequential algorithms that are leveraged to predict the

performance of the configurations on a new classification problem.

81

4.3.1 Data organization

Assume that A is the given classifier with d − 1 hyperparameters, and each hyperpa-

rameter has the search space Ωi with the cardinality of ni, i.e.,

|Ωi| = ni, i = 1, 2, · · · , d− 1. (4.6)

Then the configuration search space Ω = Ω1 ◦ Ω2 ◦ · · · ◦ Ωd−1 lies in an n1 × · · · × nd−1

multidimensional space. Here, ◦ denotes the outer product. Therefore, the performance data

on a classification problem can be formed as a tensor T ′ with the dimension of n1×· · ·×nd−1.

Now suppose that we have N historical problems D1, · · · ,DN on which the performance

of classifier A is already known, namely, T ′
1 , · · · , T ′

N , then we can generate a higher-order

tensor T̄ ∈ Rn1×···×nd−1×N where T ′
i = T̄ (:, · · · , :, i), i = 1, · · · , N . That is, T ′

i ’s are the

frontal slices of T . Given a new problem D at hand in which the performance evaluations

on some configurations are still not determined yet. Denoting this incomplete performance

tensor as T̃ ′, we can combine T̄ and T̃ ′ as T ∈ Rn1×···×nd−1×nd in which nd = N + 1 and

T̃ ′ = T (:, · · · , :, nd). In Section 4.4, we will further illustrate how to form the T for real

problems. Our goal is to recover the missing entries of T̃ as accurately as possible via

the LRTC approach. An example of data organization is illustrated in Figure 4.2 where

SVM-RBF has two hyperparameters C and gamma with a length of 21 and 19 respectively.

4.3.2 Performance estimation via LRTC

To complete the unknown entries of the performance tensor T , we look for the optimal

factor matrices Wi,Hi, i = 1, · · · , d, as stated in problem (4.5). By fixing mode i, we have

82

Figure 4.2: An example of 3D data organization. The first three frontal slices are the
performance data of SVM on three historical problems while the fourth slice is the incomplete
performance data on a new problem required to be completed.

the following sub-problem

min
Wi,Hi,Y(i)

1

2
∥Y(i) −WiHi∥2F +

βi
2
(∥Wi∥2F + ∥Hi∥2F)

s.t. Y(i) ∗M(i) = T(i) ∗M(i).

The objective function presented here is nonconvex because three variables, Wi,Hi, andY(i),

are involved. Therefore, the block coordinate descent method is adopted which alternatively

updates one variable while fixing the other two in each iteration. The updating rules for

Wi,Hi, and Y(i) in (l + 1)th iteration are the following

Hl+1
i = [Wl

i

⊤
Wl

i + βiIri]
†Wl

i

⊤
Yl

(i) (4.7)

Wl+1
i = Yl

(i)H
l+1
i

⊤
(Hl+1

i Hl+1
i

⊤
+ βiIri)

† (4.8)

Yl+1
(i) = Wl+1

i Hl+1
i (4.9)

Yl+1
(i) = T(i) ∗M(i) +Yl+1

(i) ∗ (1−M(i)) (4.10)

83

where A† stands for the Moore-Penrose pseudoinverse if A is singular, otherwise it denotes

the inverse of A. Notice that Y0
(i) = T(i). When the updating procedure is completed, the

recovered tensor Y will be reconstructed as Y =
∑d

i=1 αi · fold(Y(i)) where fold(·) is to fold

a matrix into a tensor. Hence, the predictive performance Ỹ on the new problem can be

extracted from Y , i.e., Ỹ = Y(:, · · · , :, nd).

4.3.3 Performance estimation via kernel LRTC

In (4.5), we assume that each Y(i) is linearly decomposed associated with Wi and Hi;

however, this underlying relationship essentially is nonlinear. To model this nonlinearity, in

this subsection, we propose a kernelized LRTC (KLRTC) algorithm. Assume that ϕ is a

nonlinear mapping, the objective function of KLRTC is given by

min
Wi,Hi,Y(i)

d∑
i=1

αi

[
1

2
∥ϕ(Y(i))− ϕ(Wi)Hi∥2F +

βi
2
(∥Wi∥2F + ∥Hi∥2F)

]
,

s.t. Y(i) ∗M(i) = T(i) ∗M(i).

(4.11)

Although we do not the know the explicit form of ϕ, their inner products can be calculated by

a kernel function k(·, ·), i.e., ϕ(x1)
⊤ϕ(x2) = k(x1,x2). The two we adopted are polynomial

(i.e., k(x1,x2) = (x⊤
1 x2+c)

q) and RBF (i.e., k(x1,x2) = exp(− 1
σ
∥x1−x2∥2)) kernels. Notice

that if k(x1,x2) = x⊤
1 x2, then (4.11) is equivalent to (4.5).

Denote KYY = ϕ(Y)⊤ϕ(Y), KYW = ϕ(Y)⊤ϕ(W), and KWW = ϕ(W)⊤ϕ(W). Then

the objective function, for each mode i, can be formulated as

min
Wi,Hi,Y(i)

1

2
tr
(
KY(i)Y(i)

− 2K⊤
Y(i)Wi

Hi +H⊤
i KWiWi

Hi

)
+
βi
2

(
∥Wi∥2F + ∥Hi∥2F

)
,

s.t. Y(i) ∗M(i) = T(i) ∗M(i).

(4.12)

84

We also adopt block coordinate descent to update Wi,Hi, and Y(i). Suppose Wl
i,H

l
i, and

Yl
(i) are known and we seek the next updating Wl+1

i ,Hl+1
i , and Yl+1

(i) .

Update Hi: As Hi is free of kernel functions, so the updating of Hi is straightforward.

Removing the terms that do not involve variable Hi in (4.12), we have

Hl+1
i = min

Hi

1

2
tr
(
H⊤

i KWl
iW

l
i
Hi − 2K⊤

Yl
(i)

Wl
i
Hi

)
+
βi
2
∥Hi∥2F

= (KWl
iW

l
i
+ βiIri)

†K⊤
Yl

(i)
Wl

i
.

(4.13)

Update Wi: Removing the terms that do not involve variable Wi in (4.12), we have,

Wl+1
i =min

Wi

1

2
tr
(
Hl+1

i

⊤
KWiWi

Hl+1
i − 2K⊤

Yl
(i)

Wi
Hl+1

i

)
+
βi
2
∥Wi∥2F .

Next, we derive the updating rule for Wi when a specific kernel function is employed. For

polynomial kernel, the gradient with respect to Wi is given by

∆Wi
= −Yl

(i)

(
K

(q−1)

Yl
(i)

Wi
∗Hl+1

i

⊤
)
+Wi

[
(Hl+1

i Hl+1
i

⊤
) ∗K(q−1)

WiWi
+ βiIri

]
,

where (K
(q−1)
YW)ij = (y⊤

i wj + c)q−1 and (K
(q−1)
WW)ij = (w⊤

i wj + c)q−1. Let ∆Wi
= 0. By using

the iteratively reweighted optimization, i.e., fixing Wi as W
l
i in the kernel matrices K

(q−1)

Yl
(i)

Wl
i

and KWl
iW

l
i
, we solve for Wi as

Wl+1
i = Yl

(i)

(
K

(q−1)

Yl
(i)

Wl
i
∗Hl+1

i

⊤
)[

(Hl+1
i Hl+1

i

⊤
) ∗K(q−1)

Wl
iW

l
i
+ βiIri

]†
. (4.14)

85

Similarly, the gradient with respect to Wi, when RBF kernel is adopted, is given by

∆Wi
=

2

σ
Wi

(
Γ1 +Q2 − Γ2 +

σβi
2

Iri

)
− 2

σ
Yl

(i)Q1,

where Q1 = Hl+1
i

⊤ ∗ KYl
(i)

Wl
i
,Q2 = (Hl+1

i Hl+1
i

⊤
) ∗ KWl

iW
l
i
, and Γ1 = diag(1⊤Q1),Γ2 =

diag(1⊤Q2). Then, by iteratively reweighted optimization, one arrives at

Wl+1
i = Yl

(i)Q1

(
Γ1 +Q2 − Γ2 +

σβi
2

Iri

)†

. (4.15)

Update Y(i): Removing the terms that do not involve variable Y(i) in (4.12), we have,

Yl+1
(i) = min

Y(i)

1

2
tr
(
KY(i)Y(i)

− 2K⊤
Y(i)W

l+1
i

Hl+1
i

)
. (4.16)

For polynomial kernel, the gradient of (4.16) with respect to Y(i) is

∆Y(i)
= −Y(i)

(
K

(q−1)

Yl
(i)

Yl
(i)

∗ In
)
+Wl+1

i

(
(K

(q−1)

Yl
(i)

Wl+1
i

)⊤ ∗Hl+1
i

)
,

where (K
(q−1)
Y Y)ij = (y⊤

i yj + c)q−1, so the updating rule of Y(i) is given by

Yl+1
(i) = Wl+1

i

(
(K

(q−1)

Yl
(i)

Wl+1
i

)⊤ ∗Hl+1
i

)(
K

(q−1)

Yl
(i)

Yl
(i)

∗ In
)†

. (4.17)

For RBF kernel, tr(KY(i)Y(i)
) is removed from (4.16) since it is a constant. Its gradient for

Y(i) is given by

∆Y(i)
=

2

σ

(
Γ3Y(i) −Wl+1

i Q3

)
,

86

Algorithm 4 LRTC(T̄ , r,α,D)

Input: Training tensor T̄ , latent dimensions r = [r1, · · · , rd], SNN coefficients α = [α1, · · · , αd],
new problem D
Output: Predictive performance Ỹ
1: Generate the testing tensor T̃ on problem D
2: Initialize low-rank tensor: Y0 = T
3: Initialize factor matrices: W0

i ∈ Rni×ri , i = 1, · · · , d
4: while stop criteria is unsatisfied do
5: for i = 1 to d do
6: Update Hl+1

i using (4.7) or (4.13)
7: Update Wl+1

i using (4.8) or (4.14) or (4.15)
8: Update Yl+1

(i) using (4.9) or (4.17) or (4.18)

9: Update Yl+1
(i) using (4.10)

10: end for
11: Y l+1 =

∑d
i=1 αi · fold(Yl+1

(i))

12: end while
13: ỸLRTC = Y l+1(:, · · · , :, nd)

where Q3 = K⊤
Yl

(i)
Wl+1

i

∗Hl+1
i , and Γ3 = diag(1⊤Q3). Hence, the updating rule for Yl+1

(i) is

given by

Yl+1
(i) = Γ†

3

(
Wl+1

i Q3

)
. (4.18)

The inverse matrices in (4.17) and (4.18) can be updated efficiently since K
(q−1)

Yl
(i)

Yl
(i)

∗ In and

Γ3 are diagonal. Finally, Yl+1
(i) will be further updated through (4.10).

The workflow of (kernel) LRTC is depicted in Algorithm 4, and how to generate the

testing tensor T̃ on a problem D will be given in next section.

4.3.4 Coupled matrix factorization (CMF)

In this subsection, we develop an auxiliary algorithm that either can be employed

independently or performed jointly with Algorithm 4 to enhance the reliability of outcomes.

Again, assume that there are N historical classification problems D1, · · · ,DN , and from each

one we can extract a set of meta-features. Let f be the meta-feature extractor, then the meta-

87

feature xi ∈ Rp, i = 1, · · · , N, can be represented as xi = f(Di) where p is the dimension of

meta-features.

Denote X = [x1, · · · ,xN]
⊤ ∈ RN×p, then an objective function combining with the

meta-feature X and training tensor T̄ can be established as follows

min
W,H,V

1

2
∥T̄(d) −WH∥2F +

γ

2
∥X−WV∥2F +

β

2
(∥W∥2F + ∥H∥2F + ∥V∥2F), (4.19)

where T̄(d) ∈ RN×
∏d−1

i=1 ni , W ∈ RN×r, H ∈ Rr×
∏d−1

i=1 ni , and V ∈ Rr×p. γ > 0 is the

coefficient that adjusts the influence of the meta-feature in (4.19) and β > 0 is a regularization

parameter. The rationale of (4.19) is to optimize the relationship between the meta-features

and the classification performance over historical problems by sharing one common matrix

W.

Similarly, block-coordinate descent is applied to solve the optimization problem (4.19),

and three updating rules can be acquired as follows

Hl+1 = (Wl⊤Wl + βIr)
†Wl⊤T̄(d) (4.20)

Vl+1 = (Wl⊤Wl + βIr)
†Wl⊤X. (4.21)

Wl+1 = (T̄(d)H
l+1⊤ + γXVl+1⊤)(Hl+1Hl+1⊤ + γVl+1Vl+1⊤ + βIr)

†. (4.22)

Next, we provide an effective way for performance estimation in the testing phase.

Suppose D is a new classification problem at hand, its meta-feature is first extracted as

x = f(D), then we have the decomposition x⊤ = wV, which leads to w = x⊤V†, and

the performance prediction is finally given by y = wH = x⊤V†H, and the prediction in

88

Algorithm 5 CMF(T̄ ,X, r, β, γ,D)

Input: Training tensor T̄ , training meta-features X, latent dimension r, regularization
coefficient β, balance coefficient γ, new classification problem D
Output: Predictive performance Ỹ
1: Initialize factor matrix: W0 ∈ RN×r

2: while stop criteria is unsatisfied do
3: Update H using (4.20)
4: Update V using (4.21)
5: Update W using (4.22)

6: end while
7: Meta-feature extraction: x = f(D)
8: ỸCMF = fold(x⊤V†H)

tensor format is presented as ỸCMF = fold(y). Notice that this prediction strategy does not

need any configuration evaluations, we treat it as coupled matrix factorization (CMF). This

procedure is summarized in Algorithm 5.

4.3.5 Combining CMF and LRTC

The success of Algorithm 4 relies on the ratio of the missing values, and the perfor-

mance of completion could be poor if the known entries are very limited. Some theoretical

analysis on how the missing ratio impacts the recovery performance can be found in [103, 104].

To overcome this potential issue in real scenarios, an algorithm integrating LRTC and CMF

is developed, and we denote it as LRTC-CMF.

Let ỸLRTC and ỸCMF be the predictive performance tensor outputs obtained from the

Algorithm 4 and the Algorithm 5, respectively. Then the joint prediction of both LRTC

and CMF is derived as

Ỹ = θỸLRTC + (1− θ)ỸCMF , (4.23)

where θ ∈ [0, 1] balances the weight of each output. Clearly, Ỹ = ỸLRTC when θ = 1 and

Ỹ = ỸCMF when θ = 0. By adding auxiliary information (either meta-features or partial

89

Figure 4.3: The automatic configuration recommendation framework based on our proposed
approaches.

true evaluations) to the problem, both LRTC and CMF can interact with each other through

the (4.23) setting.

4.4 AUTOMATIC CONFIGURATION RECOMMENDATION

To apply our proposed algorithms to configuration recommendation tasks, we design

an automatic configuration recommendation system in conjunction with the general meta-

learning framework [42], and its workflow, which comprises offline (training) and online

(testing) stages, is illustrated in Figure 4.3. Detailed descriptions are given below.

4.4.1 Offline stage

The offline stage includes performance evaluation and meta-feature extraction on a

group of historical problems.

Classification performance evaluation: The classification performance T on a spe-

cific problem D can be formulated as T = V (P ,AΩ,D) in which V (·, ·, ·) is a validation

scheme and P is a performance evaluation metric that is should be determined. We set

balanced classification accuracy as P and 10-fold stratified cross-validation as V (·, ·, ·), re-

90

spectively, and they both take the imbalance of classes that usually exists in real-world

problems into account. Since the training tensor of our approaches can be sparse, we can

set a maximal budget for each configuration evaluation, which can potentially improve the

efficiency of offline preparation. If the evaluation cannot be done within the maximal budget,

then a zero will be returned. Obviously, a smaller allocated budget will result in a higher

degree of sparsity in data.

Meta-feature extraction: The extraction of meta-features includes the computations

of a set of predefined characteristics, or meta-measures, on the given problems. To the best

of our knowledge, there are mainly eight types of meta-features that are widely leveraged for

the meta-learning in literature, and they are based on various assumptions and hypothesizes;

namely, statistics and information theory (SIT), model structure (MS), classification problem

complexity (PC), clustering, structural information (SI), (relative) landmarking (LM), and

concept. An overview of meta-features is available in [105]. The public Python software

pymfe [23] is adopted in our system to perform meta-feature extraction, in which the users

can customize which meta-measures to extract independently or jointly among the eight

types of meta-features. Due to the variety of meta-measures, the min-max scaling strategy

is applied to normalize the range of each meta-measure into interval [0, 1] after the raw

meta-measure values are computed such that each of them has equal importance for the

given problem.

4.4.2 Online stage

In the online phase, we next explain how to prepare the testing tensor T̃ and the

recommendation scheme of our system when the predictive performance Ỹ is generated.

91

Partial configuration evaluation: We deploy the exact same 10-fold cross-validation

strategy we designed for the historical performance evaluation to partially evaluate the con-

figurations to generate a testing tensor T̃ for a new problem D . The only difference lies in

that a proportion of configurations Ω̃A will be evaluated rather than the whole search space

ΩA . Suppose that the prescribed keeping ratio is ϵtest (ϵtest ∈ (0, 1)), then |ΩA |ϵtest points

are going to be tested. The candidate configurations can be searched by either random selec-

tion or Bayesian optimization, or other search algorithms. We set a budget large enough to

ensure that every configuration can be chosen and no budget is wasted in our experiments.

When |ΩA |ϵtest is pretty small compared to |ΩA |, a feasible trick to initialize T̃ is to fill the

zero entries with the average of the known entries. Let Γ be the index set of the trained

configurations, then the testing tensor can be augmented by the following rule

T̃ (i, · · · , j) =

T̃ (i, · · · , j), (i, · · · , j) ∈ Γ,

sum(T̃Γ)
|Γ| , (i, · · · , j) /∈ Γ,

(4.24)

where sum(·) sums up all the entries of an array.

Configuration recommendation: Suppose that a predictive performance tensor Ỹ is

given for a problem D , then the configuration(s) that has/have the highest predictive score

is/are chosen as the candidate for problem D . Detailedly, we are first to order the entries

of Ỹ in descending tendency, such as yωi1
≥ yωi2

≥ · · · ≥ yωim
and m =

∏d−1
i=1 ni. Then,

configuration ωi1 is the selected candidate for problem D . Since the optimal configuration

on a problem is usually not unique, we can also recommend multiple candidates, i.e., ωr
D =

{ωi1 ,ωi2 , · · · ,ωic} where c≪ m, and ωr
D implies the recommended candidates for problem

92

D . Later, we call ωij ∈ ωr
D as the jth-order recommendation.

4.5 EMPIRICAL VALIDATION

This section presents the effectiveness of our proposed method in real applications. Be-

fore the discussion of empirical results, we first introduce the experimental settings employed,

including the evaluated classifiers, adopted classification problems, and the recommendation

performance evaluation metrics.

4.5.1 Experimental settings

Evaluated classifiers: We here study the configuration selection for the classical support-

vector machines (SVM) and the state-of-the-art deep neural network classifiers such as vision

transformer (ViT) [98] and residual convolutional neural network (ResNet) [100] as well.

We consider RBF kernel SVM which has two important hyperparameters: regularization

coefficient ‘C’ and RBF kernel width ‘gamma’. Suggested by literature [71], we set the search

ranges of ‘C’ and ‘gamma’ are 2−5:1:15 and 2−15:1:3, respectively. Therefore, we have 21× 19 =

399 candidate configurations in total. For the implementations, we adopt the software SVC

in the scikit-learn library.

On the other hand, we adopt the trained ViT (ViT-B/32 [98]) and ResNet (ResNet101

[100]) models and just fine-tune them on new problems. Studies about neural architecture

search can be found in [106, 107, 108]. We consider five hyperparameters: ‘dropout’ (rate is

0.5) or not, ‘optmizier’ (Adam, SGD, RMSprop), ‘learning rate’ (with starting rate 0.1,

0.01, 0.001, 0.0001), ‘batch size’ (32, 128, 512), and ‘epochs’ (10, 20, 30, 40, 50). In total,

there are 2 × 3 × 4 × 3 × 5 = 360 candidate configurations. We run all training on Colab

GPUs or TPUs.

93

Table 4.1: The comparisons of ACA (%), ARA (%), HR (%), and MRR between LRTC and MFCF under various keeping ratios
when three types of kernels are employed. The maximal value of each column is highlighted. The ACA of the real optimal
configurations on the testing problems is 79.08%.

Methods
ϵtest = 0.25% ϵtest = 0.50% ϵtest = 1%

ACA ARA HR MRR ACA ARA HR MRR ACA ARA HR MRR
LRTC-Lin 74.09 81.17 77.12 0.0929 73.79 81.73 78.94 0.0889 73.99 82.41 78.33 0.0984
LRTC-Poly 74.27 81.58 77.73 0.0964 74.65 82.48 79.24 0.0921 75.00 84.28 81.21 0.0881
LRTC-RBF 74.32 81.88 77.73 0.0941 74.02 81.68 78.94 0.0970 74.90 83.77 81.06 0.1085
MFCF-Lin 73.78 80.09 77.12 0.0899 73.77 80.51 78.48 0.0934 73.39 80.70 75.76 0.0875
MFCF-Poly 73.81 80.58 78.64 0.0941 73.80 80.63 78.79 0.0939 73.67 80.81 76.36 0.0927
MFCF-RBF 74.03 80.28 75.45 0.0706 74.06 80.35 75.30 0.0801 74.66 81.61 77.73 0.0819

Methods
ϵtest = 2% ϵtest = 3% ϵtest = 4%

ACA ARA HR MRR ACA ARA HR MRR ACA ARA HR MRR
LRTC-Lin 75.98 87.67 84.24 0.1328 76.69 90.84 87.27 0.1432 77.11 91.75 89.09 0.1362
LRTC-Poly 76.05 88.17 85.30 0.1301 76.90 90.40 88.79 0.1490 77.22 92.32 90.45 0.1638
LRTC-RBF 76.05 87.90 85.15 0.1347 76.93 90.94 88.79 0.1509 77.20 92.37 90.45 0.1623
MFCF-Lin 75.77 87.18 83.64 0.1282 76.67 90.63 87.12 0.1383 77.11 91.74 89.09 0.1411
MFCF-Poly 75.92 87.39 84.39 0.1285 76.68 88.91 87.58 0.1402 77.16 91.88 90.15 0.1639
MFCF-RBF 75.81 87.46 85.00 0.1169 76.85 90.87 88.79 0.1263 77.13 92.02 90.45 0.1431

Methods
ϵtest = 5% ϵtest = 10% ϵtest = 20%

ACA ARA HR MRR ACA ARA HR MRR ACA ARA HR MRR
LRTC-Lin 77.63 93.97 91.82 0.1736 78.22 96.35 96.21 0.2401 78.61 97.87 97.42 0.3714
LRTC-Poly 77.74 93.84 92.42 0.1959 78.21 96.14 96.21 0.2427 76.60 97.49 97.27 0.3645
LRTC-RBF 77.74 93.90 92.42 0.1974 78.22 96.29 96.21 0.2417 78.61 97.93 97.42 0.3732
MFCF-Lin 77.63 93.86 91.82 0.1793 78.22 96.30 96.21 0.2401 78.61 97.92 97.42 0.3680
MFCF-Poly 77.67 93.22 91.36 0.1954 78.15 95.51 95.45 0.2390 78.49 96.26 95.76 0.3529
MFCF-RBF 77.71 93.87 92.42 0.1795 78.13 95.85 96.21 0.2226 78.48 97.07 97.12 0.3292

94

Classification problems: For SVM, we collected 136 classification problems from the UCI

machine learning repository, and 66 of them are randomly selected as testing (new) problems

while the rest of 70 are deployed as historical problems. These problems cover almost all

the attribute types, such as discrete, continuous, binary, and categorical. The range of the

problem sizes is from 78 to 30K. For ViT and ResNet, we collected 105 image classification

problems from the Kaggle website, and 52 of them are randomly selected as testing (new)

problems while the rest of the 53 are deployed as historical problems. The range of the

problem sizes is from 194 to 64K. Detailed information about the selected UCI and Kaggle

problems can be found in Appendix I and Appendix II.

Evaluation metrics: We adopt four metrics for evaluating the recommendation perfor-

mance, namely, average classification accuracy (ACA), average recommendation accuracy

(ARA), hit rate (HR), and mean reciprocal rank (MRR). The first three are widely used in

meta-learning, see [15] and reference therein. The range of ACA, ARA, and HR is [0, 1], and

a larger value is preferred. MRR compares the ranks of the real optimal configuration and

the recommended configuration and it also has a range of [0,1] and a larger value is better.

Their definitions can also be found in Appendix III.

4.5.2 Effectiveness of LRTC on SVM

In this experiment, three kernels, i.e., linear, polynomial, and RBF kernel, are

applied to LRTC, we denote them separately as LRTC-Lin, LRTC-Poly, and LRTC-

RBF. We test 9 different keeping ratios on the testing problems, namely, ϵtest =

0.25%, 0.50%, 1%, 2%, 3%, 4%, 5%, 10%, and 20%, to show the performance variance of LRTC

when the number of the known entries is increasing. When ϵtest = 0.25%, only 1 entry of

95

0.250.50 1 2 3
Keeping ratio:

test
 (%)

50

55

60

65

70

75

80

85

(A
C

A
+

A
R

A
+

H
R

)/
3
 (

%
)

4 5 10 20
84

85

86

87

88

89

90

91

92

LRTC-Lin

LRTC-Poly

LRTC-RBF

RS

0.250.50 1 2 3
Keeping ratio:

test
 (%)

50

55

60

65

70

75

80

85

(A
C

A
+

A
R

A
+

H
R

)/
3
 (

%
)

LRTC-Lin

LRTC-Poly

LRTC-RBF

PSO

4 5 10 20
84

85

86

87

88

89

90

91

92

0.250.50 1 2 3
Keeping ratio:

test
 (%)

50

55

60

65

70

75

80

85

(A
C

A
+

A
R

A
+

H
R

)/
3
 (

%
)

4 5 10 20
84

85

86

87

88

89

90

91

92

LRTC-Lin

LRTC-Poly

LRTC-RBF

BO

Figure 4.4: The comparisons between RS, PSO, BO, and LRTC, where the reported performance is the average of ACA, ARA,
and HR.

Table 4.2: Wilcoxon signed-rank test results on CA between LRTC and MFCF. The p-values that are larger than 0.05 are
underlined.

Alternative hypothesis
Keeping ratio ϵtest

0.25% 0.50% 1% 2% 3% 4% 5% 10% 20%
LRTC-Lin > MFCF-Lin 0.830 0.020 0.040 0.020 0.030 0.040 0.010 0.500 1.000
LRTC-Poly> MFCF-Poly 0.910 0.580 0.000 0.030 0.040 0.010 0.000 0.000 0.000
LRTC-RBF> MFCF-RBF 0.040 0.550 0.000 0.000 0.000 0.000 0.000 0.000 0.000

96

each testing problem is known, while there are 80 known entries when ϵtest = 20%.

LRTC versus MFCF

Here, we compare LRTC with MFCF [48] which is a special case of LRTC. The results

under the four metrics are summarized in Table 4.1. The testing tensor is initialized by

random search, so the experiment is repeated ten times for each ϵtest, and only the average is

reported to reduce the bias caused by the randomness of testing tensor initialization. Notice

that the training tensor is dense, i.e., the budget is large enough for offline evaluations. For

this comparison, we only consider the first-order recommendation.

From Table 4.1, one can observe that: 1) The size of ϵtest has a dramatic impact on

the recommendation performance of LRTC as expected. When ϵtest = 0.25%, the ACA,

ARA, HR, and MRR are about 74.09%, 81.17%, 77.12%, and 0.0929, respectively; however,

these indexes mount to 78.61%, 97.87%, 97.42%, and 0.3714, respectively, when ϵtest = 20%.

MFCF has a similar tendency, but the performance difference between ϵtest = 0.25%, 0.50%,

and 1% is minor; 2) Nonlinear kernels indeed improve the performance of LRTC. Especially

when ϵtest is small, kernel functions can capture the underlying relationships which guar-

antees better performance than the linear version, e.g., see ϵtest = 0.25%, 0.50%, and 1%.

Nevertheless, when the known entries are increasing, the advantage of nonlinear kernels over

the linear kernel is declining, e.g., see ϵtest = 10% and 20%. In contrast, nonlinear kernels

do not show superiority for MFCF, and we observe that MFCF-Lin wins MFCF-Poly and

MFCF-RBF on 8 over 9 cases; 3) When comparing to MFCF, LRTC wins in most of the

cases no matter which kernel is applied, which proves that the performance space in a ten-

sor structure preserves more useful information than the traditional vectorized setting. The

97

gap between them is narrowing down with the increase of known entries. Especially when

ϵtest = 10% and 20%, MFCF-Lin can perform equally as LRTC. In real applications, the

entries may not be always fully available due to many unexpected reasons, in such a case,

LRTC appears to be a better choice than MFCF.

To see if LRTC outperforms MFCF significantly, we apply the Wilcoxon signed-rank

test [46] to each pair of LRTC and MFCF using the same kernel at a 5% significance level.

The null hypothesis is that LRTC does not outperform MFCF significantly. The tested p-

values of each pair are shown in Table 4.2, where p-values that are less than 0.05 mean that

we reject the null hypothesis and accept the alternative hypothesis, i.e., the performance of

LRTC is significantly better than that of MFCF. Here, we only report the test on CA, and

similar results can be acquired on RA. As we can see, LRTC with any kernels is statistically

better than MFCF when ϵtest is between 1% and 5%. When ϵtest = 10% and 20%, we do not

observe the obvious difference between LRTC-Lin and MFCF-Lin, yet the nonlinear variants

of LRTC are still better than that of MFCF. Similarly, for the smaller ϵtest, e.g., 0.25% and

0.50%, the superiority of our method is less obvious, we only observe 2 out of 6 cases where

our method statistically outperforms MFCF.

LRTC versus search algorithms

Since LRTC needs partial configuration evaluations to start the completion and this

can be done by search algorithms, e.g., RS, PSO, and BO, we prefer the recommendations

of LRTC not to be inferior to the results found by the search algorithms. The comparisons

between LRTC and RS (PSO, BO) are illustrated in Figure 4.4, where the reported perfor-

mance for each ϵtest is the mean of ACA, ARA, and HR. Because of the randomness of RS,

98

we repeat the comparisons 10 times, and the average performance is adopted.

From Figure 4.4, one can observe that LRTC outperforms search algorithms dramati-

cally when ϵtest is small, e.g., ϵtest = 0.25%, 0.50% and 1%. As the increase of ϵtest, search

algorithms can evaluate more configurations, so the difference between LRTC and RS (PSO,

BO) is decreasing. Especially when ϵtest = 20%, namely, 80 out of 399 configurations are

tested, in which RS (PSO, BO) usually can find the optimal ones, while the LRTC does not

appear to have the advantage.

An interesting phenomenon is that when LRTC is initialized by BO, its performance

usually outperforms BO in a larger gap than that when it is initialized by RS, but LRTC

does not show any advantage when ϵtest is larger than 10%. A reasonable explanation is

that BO searches the promising configurations for evaluations guided by the acquisition

functions rather than randomly selecting one as RS does, so the initialization provided by

BO can better describe the real performance space, or it is a good approximation of the real

performance space, from which LRTC benefits. Therefore, BO should be a better choice

for the initialization of the LRTC algorithm. Overall, LRTC can provide a better approach

than search algorithms when the size of the search space of an algorithm is on a large scale

since evaluating a large proportion of configurations via searching is often computationally

unacceptable.

Performance of CMF

We present the effectiveness of CMF by comparing it to four meta-learning baselines,

namely, KNN, kernel method (KKNN) [55], MLP [22], and warm-starting MFCF [18]. The

meta-features employed are a combination of the eight state-of-the-art meta-features. The

99

Table 4.3: The comparisons of ACA (%), ARA (%), HR (%), and MRR between KNN, KKNN, MLP, MFCF, and CMF when
three different orders of hyperparameters are recommended. The maximal value of each column is highlighted.

Methods
1st-order 2nd-order 3rd-order

ACA ARA HR ACA ARA HR ACA ARA HR MRR
CMF 76.39 89.28 87.88 76.06 88.30 86.36 76.47 88.61 86.36 0.1495
KNN 74.22 81.59 78.79 74.38 82.27 78.79 73.90 81.26 77.27 0.0924
KKNN 74.24 81.26 77.27 73.97 81.30 75.76 74.53 82.11 77.27 0.0846
MLP 75.04 84.47 80.30 75.04 84.57 81.82 75.00 84.07 80.30 0.0459
MFCF 75.21 83.21 79.69 75.32 83.78 78.79 75.30 83.57 80.30 0.0308

Table 4.4: Wilcoxon signed-rank test results on CA between KNN, KKNN, MLP, MFCF, and CMF. The p-values that are
larger than 0.05 are underlined.

Alternative hypothesis
The ith-order recommendation
1 2 3

CMF > KNN 0.000 0.010 0.000
CMF > KKNN 0.000 0.010 0.000
CMF > MLP 0.000 0.000 0.000
CMF > MFCF 0.000 0.030 0.000

100

comparison results are given in Table 4.3 where the performance of the first three order

recommendations is separately presented. The best parameter(s) for each method is/are

determined by grid search.

From Table 4.3, one can observe that CMF outperforms the other four baselines with a

large gap throughout the three different order recommendations, which shows the superiority

of our method. In terms of ACA, ARA, and HR, MLP occupies the second place and

MFCF takes the third place while KKNN and KNN rank fourth and fifth, respectively. For

MRR, CMF ranks first but KNN and KKNN have a higher score than MLP and MFCF.

When the first preference order configuration is recommended, the ACA, ARA, and HR

of CMF are 76.39%, 89.28%, and 87.88%, respectively, which are between the performance

of LRTC when ϵtest = 2% and ϵtest = 3%. For the second and third preference order

recommendations, the performance of CMF is slightly decreasing, which implies that the

first preference order recommendation is better than the second and third recommendations.

However, for KNN, KKNN, MLP, and MFCF, the highest performance is obtained on the

second or third recommendation.

Next, to check if CMF overpasses other baselines significantly, we report the Wilcoxon

signed-rank test results in Table 4.4. Since all p-values are less than 0.05, we reach the

conclusion that CMF is significantly better than KNN, KKNN, MLP, and MFCF over the

first three ordered recommendations.

Performance of combined LRTC and CMF

This experiment aims to show how the performance of the combined algorithm LRTC-

CMF is boosted when the ϵtest is small. To show the overall performance difference between

101

0.250.50 1 2 3 4 5 10 20
Keeping ratio:

test
 (%)

76

78

80

82

84

86

88

90

92

(A
C

A
+

A
R

A
+

H
R

)/
3
 (

%
)

CMF

LRTC-Lin

LRTC-Lin+CMF

0.250.50 1 2 3 4 5 10 20
Keeping ratio:

test
 (%)

76

78

80

82

84

86

88

90

92

(A
C

A
+

A
R

A
+

H
R

)/
3

 (
%

)

CMF

LRTC-Poly

LRTC-Poly+CMF

0.250.50 1 2 3 4 5 10 20
Keeping ratio:

test
 (%)

76

78

80

82

84

86

88

90

92

(A
C

A
+

A
R

A
+

H
R

)/
3

CMF

LRTC-RBF

LRTC-RBF+CMF

Figure 4.5: The comparisons between CMF, LRTC, and their combinations on the average
of ACA, ARA, and HR.

LRTC, CMF, and LRTC-CMF, we only report the average of ACA, ARA, and HR for each

ϵtest. The details are depicted in Figure 4.5. Notice that here we only consider the first-order

recommendation.

From Figure 4.5, one can observe that when ϵtest is smaller than 3% where CMF outper-

forms LRTC, the combined algorithm can fairly improve the recommendation performance.

However, when ϵtest > 3% where LRTC outperforms CMF, the impact of CMF on the com-

bined algorithm is limited, although there are some improvements. A special case is that

LRTC-CMF with linear kernel does not show any improvement when ϵtest = 3%, but it is

significantly better than LRTC-Lin when ϵtest = 4%.

Overall, by integrating both partial real evaluations and meta-features, LRTC-CMF

can benefit from each other when the known evaluations are insufficient. However, this

combination is less effective as expected when a large proportion of configurations has been

already evaluated.

Influence of tensor sparsity

This experiment aims at investigating how the recommendation capacity of LRTC would

be affected when the different degrees of sparsity are applied to the training tensor. We

set the training tensor keeping ratio ϵtrain = 10%, 20%, · · · , 100%, which randomly select

102

10 20 30 40 50 60 70 80 90 100

Keeping ratio:
train

 (%)

73

75

77

79

A
C

A
 (

%
)

10 20 30 40 50 60 70 80 90 100

Keeping ratio:
train

 (%)

80

85

90

95

100

A
R

A
 (

%
)

10 20 30 40 50 60 70 80 90 100

Keeping ratio:
train

 (%)

75

80

85

90

95

100
H

R
 (

%
)

test
=0.25%

test
=0.50%

test
=1%

test
=2%

test
=3%

test
=4%

test
=5%

test
=10%

test
=20%

Figure 4.6: The performance fluctuation of LRTC-RBF on SVM when the keeping ratio on
the training tensor is changing from 10% to 100%.

90%, 80%, · · · , 0% of the points in the search space that will not be evaluated in the training

stage. We repeat each ϵtrain ten times and the average performance is reported (Figure 4.6).

Notice that we only present the results of LRTC-RBF and the following conclusions are also

true for LRTC-Lin (Poly).

From Figure 4.6, one can observe that ϵtrain has some influences on the recommendation

performance, according to the four evaluation metrics, when ϵtest is small, e.g., 0.25%, 0.50%,

and 1%, while this impact is insignificant when a bigger ϵtest is applied. Although there are

fluctuations when ϵtest = 0.50%, 1%, most of the ϵtrain that are less than 100% can yield

better performance. This is also true for ϵtest = 0.25%, where a smaller ϵtrain does not

affect too much the effectiveness of LRTC-RBF. In fact, an appropriate degree of sparsity

can effectively prevent models from over-fitting and thus the sparse training tensors tend

to produce more reliable outcomes than the dense version. Therefore, the sparsity of the

training tensors not only saves time on the offline stage but also maintains the desirable

103

recommendation capacity.

4.5.3 Effectiveness of LRTC on ViT

Due to the extensive burden of training, we do not apply 10-fold cross-validation to

evaluate configurations on ViT and ResNet. We draw a proportion of instances from each

class to constitute a validation set while the remaining instances are used for training and the

performance is obtained on the validation set. In this section, we only report the performance

of LRTC when ϵtest is 0.25%, 0.50%, and 1% because we already knew that LRTC does not

perform significantly better when ϵtest is large in the previous experiment. Since the meta-

features [23] do not apply to image datasets, we cannot present the results of CMF and

LRTC-CMF.

LRTC versus MFCF

The settings for this comparison are similar to the case in SVM (4.5.2), i.e., the test-

ing tensor is initialized by random search, and the average of ten runs is reported. Also,

the training tensor is dense. We display the performance of the first-order recommendation

in Table 4.5, from which one can observe that our approaches obtain desirable outcomes.

Specifically, LRTC-Lin has the ACA, ARA, and HR of 87.21%, 94.90%, and 96.54% when

ϵtest = 0.25%, and they mount to 87.90%, 95.63%, and 97.88% when ϵtest = 1%, and it pro-

duces the worst recommendation when ϵ = 0.50% with an ACA, ARA, and HR of 86.08%,

93.34%, and 96.15%. On the other hand, the nonlinear variants achieve significant improve-

ments for each ϵtest. LRTC-RBF has the optimal performance when ϵtest = 0.25%, 1% while

LRTC-Poly shows its advantages when ϵtest = 0.50%.

As a counterpart, MFCF-based methods show relatively lower performance in many

104

Table 4.5: The comparisons of ACA (%), ARA (%), HR (%), and MRR between LRTC and MFCF under various keeping ratios
when three types of kernels are employed. The maximal value of each column is highlighted. The ACA of the real optimal
configurations on the testing problems is 91.09%.

Methods
ϵtest = 0.25% ϵtest = 0.50% ϵtest = 1%

ACA ARA HR MRR ACA ARA HR MRR ACA ARA HR MRR
LRTC-Lin 87.21 94.90 96.54 0.1736 86.08 93.34 96.15 0.1615 87.90 95.63 97.88 0.1262
LRTC-Poly 87.41 95.03 97.50 0.1466 87.87 95.50 99.23 0.1323 87.79 95.52 98.46 0.1330
LRTC-RBF 87.62 95.20 97.69 0.1443 87.58 95.14 97.88 0.1370 88.45 96.07 99.04 0.1553
MFCF-Lin 87.58 95.41 96.15 0.1258 87.62 95.46 96.15 0.1283 87.76 95.63 95.96 0.1351
MFCF-Poly 87.08 94.37 96.15 0.1668 87.17 94.43 96.92 0.1284 87.08 94.73 96.15 0.1669
MFCF-RBF 87.11 94.79 95.38 0.1465 87.30 94.88 95.77 0.1429 87.42 95.01 96.73 0.1485

Table 4.6: Wilcoxon signed-rank test results on CA between LRTC and MFCF. The p-values that are larger than 0.05 are
underlined.

Alternative hypothesis
Keeping ratio ϵtest

0.25% 0.50% 1%
LRTC-Lin > MFCF-Lin 0.580 0.318 0.037
LRTC-Poly> MFCF-Poly 0.006 0.004 0.022
LRTC-RBF> MFCF-RBF 0.019 0.030 0.048

105

cases except for ϵtest = 0.25%, 0.50% where MFCF-Lin has several higher scores in terms of

ACA and ARA. However, because of the lower HR, it indicates that MFCF-Lin performs

well only on some problems, but not for most of them. Our methods tend to recommend the

applicable configurations for more problems. We also can see that the kernelized MFCF does

not show any superiority, this may result from the insufficient nonlinear structure-preserving

of the vectorized performance space. The statistical test in Table 4.6 reveals the significant

difference between LRTC and MFCF where we only fail to accept the alternative hypothesis

“LRTC-Lin > MFCF-Lin” when ϵtest = 0.25%, 0.50%, which suggests the superiority of our

approaches.

At last, we notice that LRTC-Lin and MFCF-Poly have better MRR in some cases,

e.g., ϵtest = 0.25%, 0.50% for LRTC-Lin and ϵtest = 0.25%, 1% for MFCF-Poly, but the other

metrics appear to be average compared to other baselines, this is because they have very good

recommendations just on several problems, but the performance on most of the problems is

relatively mediocre.

LRTC versus search algorithms

Here we report the performance comparisons between RS, PSO, BO, and LRTC in

Figure 4.7. Notice that the comparison between RS and LRTC is repeated ten times due

to the uncertainty of RS and the mean performance of them is reported. We can observe

that the tendencies of LRTC with three search algorithms are similar; when only one con-

figuration (ϵtest = 0.25%) is evaluated, search-based approaches do not perform well but our

LRTC-based method dramatically improve the recommendation performance. As the al-

lowed number of evaluated configurations is increasing, the performance gap between search

106

0.25 0.50 1
Keeping ratio:

test
 (%)

70

75

80

85

90

95

(A
C

A
+

A
R

A
+

H
R

)/
3

 (
%

)

LRTC-Lin

LRTC-Poly

LRTC-RBF

RS

0.25 0.50 1
Keeping ratio:

test
 (%)

70

75

80

85

90

95

(A
C

A
+

A
R

A
+

H
R

)/
3

 (
%

)

LRTC-Lin

LRTC-Poly

LRTC-RBF

PSO

0.25 0.50 1
Keeping ratio:

test
 (%)

70

75

80

85

90

95

(A
C

A
+

A
R

A
+

H
R

)/
3

 (
%

)

LRTC-Lin

LRTC-Poly

LRTC-RBF

BO

Figure 4.7: The comparisons between RS, PSO, BO, and LRTC, where the reported perfor-
mance is the average of ACA, ARA, and HR.

methods and LRTC is narrowing but we still can see that, especially for kernel LRTC, our

approaches obtain the desired performance. When ϵtest = 1%, LRTC-Lin has similar per-

formance as RS, PSO, and BO, but LRTC-Poly and LRTC-RBF still have a chance to win

even though the superiority is minor in some occasions.

Influence of tensor sparsity

Similarly, here we discuss the performance fluctuation of LRTC-RBF on ViT when

different degrees of sparsity are applied to the training tensor. To do so, we set ϵtrain =

10%, 20%, · · · , 100% as we did for SVM, and the results are displayed in Figure 4.8, from

which one can observe that: 1) ϵtrain has a bigger influence on the performance of LRTC for

ϵtest = 0.25%, 0.50% where the main fluctuations are showed on HR and has a smaller impact

for ϵtest = 1%; 2) for ϵtest = 0.25%, 0.50%, we still have cases in which LRTC under a lower

ϵtrain outperforms the counterparts when ϵtrain = 100%, e.g., ϵtrain = 70% for ϵtest = 0.25%

and ϵtrain = 80% for ϵtest = 0.50%. The effectiveness of LRTC under ϵtrain = 100% does

not show tremendous superiority over some other smaller ϵtrain; 3) the changing of ϵtrain

does not degrade the performance of LRTC for ϵtest = 1% although there are several minor

107

10 20 30 40 50 60 70 80 90100

Keeping ratio:
train

 (%)

87.0

87.5

88.0

88.5

89.0

A
C

A
 (

%
)

10 20 30 40 50 60 70 80 90100

Keeping ratio:
train

 (%)

95.0

95.5

96.0

96.5

97.0

A
R

A
 (

%
)

10 20 30 40 50 60 70 80 90100

Keeping ratio:
train

 (%)

95

96

97

98

99

100
H

R
(%

)

test
=0.25%

test
=0.50%

test
=1%

Figure 4.8: The performance fluctuation of LRTC-RBF on ViT when the keeping ratio on
the training tensor is changing from 10% to 100%.

fluctuations. Overall, LRTC can still take advantage of the sparsity of tensors to attain

efficiency improvement without losing its performance significantly on ViT.

4.5.4 Effectiveness of LRTC on ResNet

LRTC versus MFCF

The comparisons between LRTC and MFCF are summarized in Table 4.7 and the

statistical test results on CA are listed in Table 4.8. We can observe that

• LRTC-based approaches attain the lowest HR of 98.08% and the highest HR of 100%

in five and four cases out of nine in total, which indicates that we can recommend the

applicable configurations to most of the testing problems. As a comparison, MFCF-

based baselines have the lowest HR of 90.77% and attain the highest HR of 99.23%

once.

• Our methods have the lowest (highest) ACA of 83.19% (85.16%) when ϵtest = 0.25%,

and have the lowest (highest) ACA of 84.82% (85.21%) when ϵtest = 1%; however, they

108

Table 4.7: The comparisons of ACA (%), ARA (%), HR (%), and MRR between LRTC and MFCF under various keeping ratios
ϵtest when three types of kernel functions are employed. The maximal value of each column is highlighted. The ACA of the real
optimal configurations on the testing problems is 87.57%.

Methods
ϵtest = 0.25% ϵtest = 0.50% ϵtest = 1%

ACA ARA HR MRR ACA ARA HR MRR ACA ARA HR MRR
LRTC-Lin 83.19 93.66 98.08 0.0962 84.31 95.06 98.08 0.1035 85.21 96.40 98.08 0.1536
LRTC-Poly 85.00 96.27 100.00 0.1254 84.99 96.19 100.00 0.1612 85.21 96.40 98.08 0.1801
LRTC-RBF 85.16 96.24 100.00 0.1488 84.23 95.13 100.00 0.1263 84.82 95.70 98.08 0.1252

MFCF-Lin 80.80 91.04 90.77 0.1064 84.54 95.59 97.50 0.1562 84.94 96.13 99.23 0.1492
MFCF-Poly 84.54 95.43 98.08 0.1243 83.79 94.36 97.12 0.1057 85.01 96.13 98.08 0.1715
MFCF-RBF 84.91 95.83 97.69 0.1492 84.50 95.26 96.92 0.1461 84.61 95.53 97.69 0.1349

Table 4.8: Wilcoxon signed-rank test results on CA between LRTC and MFCF. The p-values that are larger than 0.05 are
underlined.

Alternative hypothesis
Keeping ratio ϵtest
0.25% 0.50% 1%

LRTC-Lin > MFCF-Lin 0.002 0.757 0.043
LRTC-Poly> MFCF-Poly 0.049 0.000 0.078
LRTC-RBF> MFCF-RBF 0.155 0.058 0.010

109

show relatively worse performance when ϵtest = 0.50% with the lowest and highest

ACA of 84.23% and 84.99%. On the other hand, kernelized LRTC shows superior

performance again. Especially, LRTC-Poly performs the best when ϵtest = 0.50%, 1%

while LRTC-RBF is the optimal for ϵtest = 0.25%.

• For MFCF, linear kernel obtains the optimal performance for ϵtest = 0.50%, and RBF

and polynomial kernel win the first place for ϵtest = 0.25% and ϵtest = 1%, separately.

On average, LRTC outweighs MFCF even though MFCF-RBF has the highest MRR

for ϵtest = 0.25% and MFCF-Lin has the highest ARA for ϵtest = 1%, and MFCF-Lin

outweighs LRTC-Lin when ϵtest = 0.50% in terms of ACA and ARA. The Wilcoxon

signed-rank tests in Table 4.2 show that our proposed approaches are statistically

better than MFCF in five over nine cases, and two other test scores are close to 0.05.

LRTC versus search methods

Here we report the performance comparisons between search algorithms and LRTC in

Figure 4.9. The comparison between RS and LRTC is also repeated ten times and the mean

performance of them is considered. We can draw similar conclusions as we had for ViT:

the tendencies of LRTC associated with three search algorithms are similar; when only one

configuration (ϵtest = 0.25%) is evaluated, search-based approaches do not perform well but

LRTC significantly improves the recommendation performance. As the allowed number of

evaluations is increasing, the performance gap between RS, PSO, BO, and LRTC is narrowing

down but we still can see that, especially for kernel LRTC, our approaches obtain the desired

performance. When ϵtest = 1%, LRTC-Lin has a similar performance as PSO and BO, but

LRTC-Poly and LRTC-RBF still have chances to outperform with a significant difference.

110

0.25 0.50 1

Keeping ratio:
test

 (%)

70

75

80

85

90

95

(A
C

A
+

A
R

A
+

H
R

)/
3
 (

%
)

LRTC-Lin

LRTC-Poly

LRTC-RBF

RS

0.25 0.50 1

Keeping ratio:
test

 (%)

70

75

80

85

90

95

(A
C

A
+

A
R

A
+

H
R

)/
3
 (

%
)

LRTC-Lin

LRTC-Poly

LRTC-RBF

PSO

0.25 0.50 1

Keeping ratio:
test

 (%)

70

75

80

85

90

95

(A
C

A
+

A
R

A
+

H
R

)/
3
 (

%
)

LRTC-Lin

LRTC-Poly

LRTC-RBF

LRTC-BO

Figure 4.9: The comparisons between RS, PSO, BO, and LRTC, where the reported perfor-
mance is the average of ACA, ARA, and HR.

Influence of tensor sparsity

We discuss the performance fluctuation of LRTC-RBF by setting the keeping ratio of

the training tensor as ϵtrain = 10%, 20%, · · · , 100%. The experimental results are illustrated

in Figure 4.10, from which one can observe that: 1) the ϵtrain shows a bigger influence on the

performance of LRTC-RBF for ϵtest = 0.25%, 0.50% and has a smaller impact for ϵtest = 1%;

2) for ϵtest = 0.25%, a higher ϵtrain tends to produce a better performance and the best

performance is obtained when ϵtrain = 80%; nevertheless, there is a contrary tendency for

ϵtest = 0.50% and the best one is achieved when ϵtrain = 20% which is preferred. The

variations of effectiveness when ϵtest = 1% are relatively stabler in terms of ACA and ARA,

and the negative impact of the training tensor sparsity is minor and the best performance

is gained when ϵtrain = 40%; 3) notice that the overall best performance is attained when

ϵtest = 0.25% and the worst one is obtained when ϵtest = 0.50%, which are coincident with

the results given in Table 4.1.

111

10 20 30 40 50 60 70 80 90100

Keeping ratio:
train

 (%)

84.0

84.5

85.0

85.5

86.0

A
C

A
 (

%
)

10 20 30 40 50 60 70 80 90100

Keeping ratio:
train

 (%)

95.0

95.5

96.0

96.5

97.0

A
R

A
 (

%
)

10 20 30 40 50 60 70 80 90100

Keeping ratio:
train

 (%)

97

98

99

100
H

R
 (

%
)

test
=0.25%

test
=0.50%

test
=1%

Figure 4.10: The performance fluctuation of LRTC-RBF when the keeping ratio ϵtrain on
the training tensor is changing from 10% to 100%.

4.6 CONCLUDING REMARKS

This chapter studies the automatic hyperparameter recommendation problem in which

the low-rank tensor completion (LRTC) technique is applied to estimate the performance

of the unevaluated configurations on a new classification problem. We develop both linear

and nonlinear completion algorithms based on the sum of the nuclear norm (SNN) model

where we unfold a tensor along each model to process the data while maintaining the spatial

correlated structure. Empirical results show the superiority of our proposed approach by

comparing it to model-based collaborative filtering and search algorithms, such as random

search, PSO, and Bayesian optimization. Besides LRTC, a coupled matrix factorization

algorithm is proposed to bridge the relationship between performance space and the meta-

features, which is a new method in meta-learning. Its effectiveness is verified by four well-

known baselines in the literature.

For future work, it may be interesting to apply LRTC to the algorithm selection and

112

hyperparameter optimization (CASH) problem, which aims to recommend the best algo-

rithm(s) and their hyperparameter(s) simultaneously. Our current work can only deal with

one algorithm because two or more search spaces with different dimensions may not be suit-

ably merged into one single tensor, which could be a bottleneck for dealing with the CASH

task. Further, how to handle the conditional hyperparameters or the hierarchical search

space under the tensor framework would be another interesting topic.

113

CHAPTER 5

LATENT FEATURE LEARNING

5.1 INTRODUCTION

Selecting suitable classifiers along with adequate hyperparameter configurations is of

great importance in real applications. Algorithms are desired with the ability to auto-

matically search for both the best classifiers and configurations simultaneously. This is a

fundamental research area in automated machine learning (AutoML) [109] that necessitates

the AI applications, known as Combined Algorithm Selection and Hyperparameter Optimiza-

tion (CASH) [33]. Currently, there are very limited studies addressing the CASH problem

despite its practical importance. The main challenge is how to perform the optimization

process effectively and efficiently, with the high-dimensional configuration space appearing

to be a hierarchical structure consisting of the integration of continuous (e.g., regularization

parameter ‘C’ and Gaussian kernel width ‘gamma’ in SVM), or discrete (e.g., number of neigh-

bors in KNN and the number of base learners in AdaBoost), or categorical (e.g., splitting

criteria ‘gini’ or ‘entropy’ in the decision tree) variables, presenting the considerable level

of difficulties.

One representative algorithm is Sequential Model-based Optimization (SMBO) [110], a

framework that stems from Bayesian optimization. It not only can deal with many types of

hyperparameters but also the hierarchical structure derived from the configuration space. A

similar algorithm proposed by Leite et al. [111] is active test, which selects the most promising

configurations based on previous comparisons between configurations on similar problems.

However, since these two algorithms evaluate every selected configuration, such a procedure

114

can be time-consuming if the problem size is large. The latest strategy for handling the CASH

problem is the meta-learning-based recommendation approach, where matrix factorization-

based collaborative filtering (MFCF) plays an important role [17, 18, 48, 47]. Following the

same rationale in the recommender system, MFCF assumes two problems that have certain

partially similar evaluations may maintain similar evaluations over the entire configuration

space. Hence, one can predict the performance of the configuration space on a new problem

by randomly evaluating some configurations. Nevertheless, within this framework, it requires

performing matrix factorization for every recommendation task, which could be inefficient if

the dimension of the matrix is high while this is typically true in CASH scenarios.

In this chapter, we propose a new configuration recommendation method by integrating

meta-learning with the denoising autoencoder (DAE) approach [112, 113]. In fact, even if

the search space of CASH is high-dimensional, the performance of configurations is usually

correlated to each other to a certain degree and its main structure lies in a much lower-

dimensional manifold that describes the performance distribution of the search space. By

suitably manipulating the inputs, DAE is known as an effective tool to extract the robust

latent features from data in which the attributes are highly correlated [112]. Our motivation

lies in that, by learning the robust latent subspace of the configuration space of CASH via

DAE, we are able to capture the intrinsic distribution of performance space and thus recom-

mend suitable configurations. In practice, the effectiveness of latent features determines the

performance of recommendation, which is similar to MFCF, but there are two significantly

distinct differences. First, DAE employs a self-supervised learning strategy in its process;

second, DAE is a neural network-based model. Although neural networks via learning have

shown their powerful capacity in various applications, addressing the CASH problem under

115

the neural network framework is still quite new in the meta-learning area. As far as we

know, there is only one literature [22] in which a limited approach is considered by taking

the multi-layer perceptron as a regressor for classifier selection purposes where the empirical

investigations are quite insufficient.

In this chapter, we first define the candidate classifiers and their hyperparameters to

form a configuration space of CASH and then evaluate it on a group of historical problems to

obtain the training data, i.e., classification performance under a suitable metric. Based on a

prior setting with a uniform probability distribution, some data entries are masked randomly

by setting them to zero, and the rest of the unmasked data entries remain unchanged. Then

both the encoder and decoder are trained by using the masked data as inputs and the

unmasked data as labels to extract the latent features. Once the encoder and decoder have

been developed, for a completely new problem at hand, we only need to evaluate some

configurations by constructing a “masked” performance vector where the entries are zeros if

the corresponding configurations are not selected and evaluated and feed it to the trained

DAE to obtain the predictive performance of the configuration space. The configuration that

has the highest predictive performance is thus recommended for the new problem. For real

applications, to avoid any configuration evaluations for new problems, we develop a kernel

multivariate multiple regression (MMR) model to directly connect the meta-features to the

learned latent features of historical datasets so that the performance on the new problems

can be estimated through the MMR and the decoder network, improving the efficiency of

the recommendation process directly.

To show the recommendation capacity of our proposed approach, we establish an au-

tomatic classification configuration recommendation system that includes 82 historical clas-

116

sification problems that are collected from the UCI machine learning repository and 11

commonly-used classifiers with a total of 4983 configurations. Experimental outcomes on 45

testing problems demonstrate that our model outperforms the existing meta-learning base-

lines and search algorithms under various evaluation metrics, validating the ability to select

well-suitable configurations for new problems. The main contributions of this chapter are

summarized as follows:

1. We present a new model by integrating the encoder and decoder in DAE with meta-

learning for the classifier and hyperparameter recommendation, which is a neural

network-based model by focusing on latent feature learning to capture the essential

characteristics of a data relationship and is able to provide the required capacity for

hyperparameter recommendations under the machine learning framework.

2. A kernel multivariate multiple regression model between the acquired latent variables

and the meta-features of datasets is developed to promote the recommendation effi-

ciency, in which a new configuration evaluation for different problems is not required

and thus better efficiency is achieved.

3. An automatic classification configuration recommendation system, including 82 his-

torical problems and 11 common classifiers with a total of 4983 configurations, is

established to show the effectiveness and efficiency of our proposed approach.

5.2 RELATED WORK

Following the convention, CASH is described as follows. Let A =

{A (1),A (2), · · · ,A (a)} be the given candidate classifier pool, where A (j), j = 1, · · · , a,

117

represent the classification algorithms, and denote ΩA = Ω(1) ∪Ω(2) ∪ · · · ∪Ω(a) as the cor-

responding configuration space, where Ω(j) is the hyperparameter search space for classifier

A (j). For a given classification problem D , the goal of CASH is to find a classifier A ⋆

instantiated with configuration ω⋆ such that

A ⋆
ω⋆ = arg opt

A (j)∈A ,ωi∈Ω(j)

V (P ,A (j)
ωi
,D),

where V (·, ·, ·) is a validation strategy, e.g., k-fold cross-validation, and P is a performance

evaluation metric such as the classification accuracy (error) rate and area under the curve.

Currently, there are mainly three strategies used for addressing the CASH problem,

namely, sequential model-based optimization, active testing, and meta-learning-based rec-

ommendation. The first two will be introduced next.

5.2.1 Sequential model-based optimization

Sequential model-based optimization (SMBO) [110] is a hyperparameter optimization

strategy that derives from Bayesian optimization, and it comprises a surrogate model that

fits the performance of the evaluated configurations and an acquisition function, such as

the expected improvement, that chooses the most promising ones from the remaining search

space for next evaluation. It generally outperforms the random search and the grid search

with fewer iterations. The difference between various SMBO algorithms mainly appears in

the surrogate models deployed. Two popular studies in hyperparameter optimization via

machine learning are the random forest regressor and the tree-structured Parzen estimator

because they can effectively handle the hierarchical structure and almost all types of hyper-

parameters can be found in the search space (i.e., discrete, continuous, and categorical). The

118

representative framework adopting SMBO for solving the CASH problem is Auto-WEKA

[114], where the WEKA classifiers and feature selectors are used as the candidate algorithms.

By treating each classifier as a conditional hyperparameter, Auto-WEKA can be viewed as

a single learning algorithm. Nevertheless, as a search-based method, the SMBO starts from

scratch for new problems and is required to evaluate every promising configuration it finds,

which could be costly when the sizes of problems are large.

5.2.2 Active testing

Active testing (AT) [111] employs a similar framework as search-based algorithms do

and exploits the similarity between the testing problems and the historical problems during

the testing process. The initialization of AT is done by ordering the average ranks of config-

urations over historical problems rather than random selection. The initialized configuration

is denoted as abest, the best one for the new problem, and then it is compared by the newly

selected one determined by maximizing the estimated performance gain defined by the prod-

uct of the relative landmarking and the similarity (both vary in the next round due to the

participation of new evaluation) among the untouched search space. Every newly selected

configuration is evaluated using 10-fold cross-validation and it becomes abest once it outper-

forms the previous best one. When the allocated resource is exhausted, e.g., CPU time or the

search-stopping criteria, abest is recommended. Leite et al. [111] study the performance of

AT on a small-scale search space of CASH (6 classifiers with a total of 292 configurations and

76 classification problems). Abdulrahman et al. [115] further incorporate running time into

AT to enable slow but promising configurations that can be evaluated with sufficient time;

however, its performance on the CASH problem has not been addressed. Since AT relies on

119

Figure 5.1: The illustration of a two-layer autoencoder, where θ = {W1,W2,b1,b2} and
θ′ = {W′

1,W
′
2,b

′
1,b

′
2} are separately the collection of weight and bias parameters of encoder

and decoder.

cross-validation during every iteration when terminating the test presents an important but

unsolved issue in terms of how to balance between the required time usage and the desired

performance.

5.3 DENOISING AUTOENCODERS

5.3.1 Autoencoder

Autoencoder (AE) is a special type of neural network that has a symmetric structure

(see Figure 5.1). It comprises of two components: encoder hθ and decoder gθ′ . Encoder hθ

compresses or expands the inputs to a much lower or higher dimensional space, called codes,

while the function of decoder gθ′ is to restore the original inputs from the encoded data.

Suppose Y = [y1,y2, · · · ,yn] is a set of training data where yi ∈ Rm for any i, and denote

L(·, ·) be a loss metric, e.g., Euclidean distance, the loss function of a l-layer AE can be

mathematically formulated as

F (θ, θ′) =
1

n

n∑
i=1

L (yi, gθ′(hθ(yi))) +R(θ) +R(θ′), (5.1)

120

Figure 5.2: The illustration of a two-layer denoising autoencoder, where the empty circles of
ỹ stand for the zero entries.

where θ = {W1, · · · ,Wl,b1, · · · ,bl} and θ′ = {W′
1, · · · ,W′

l,b
′
1, · · · ,b′

l} are separately the

collection of weights and biases involved in the encoder (decoder) that should be determined

via learning. The last two regularization terms are used to prevent the model from over-

fitting, and R(θ) = β
∑l

j=1(∥Wj∥2F + ∥bj∥22) and R(θ′) = β
∑l

j=1(∥W′
j∥2F + ∥b′

j∥22) where

β > 0 is the regularization parameter. We denote z = hθ(y) ∈ Rd as the encoded data

and call it as the latent feature of y thereafter. As shown in the literature, when d < n,

a single hidden layered AE with linear activation function is equivalent to the principal

component analysis [116]. The situation becomes challenging when the number of hidden

layers is increasing and nonlinear activation functions are deployed.

5.3.2 Denoising autoencoder (DAE)

To extract more useful latent features from data, a simple AE setting is not sufficient

due to its limited capacity, and additional regularization is required for feature distinction.

We consider denoising framework in our paper. To apply the denoising principle, we simply

use the corrupted data as inputs and enforce AE to recover the original clean data, as

illustrated in Figure 5.2. Denoting the corrupted data items as ỹj, j = 1, 2, · · · , n, then the

121

loss function of DAE can be set as

F (θ, θ′) =
1

n

n∑
i=1

L(yi, gθ′(hθ(ỹi))) +R(θ) +R(θ′). (5.2)

The corruption we selected is masking noise, namely, a prescribed proportion of entries of

inputs are forced to be zero (here we assume that there are no zero entries in the clean input

data) and others remain unchanged. A plausible geometric explanation of denoising is given

in [112] and the key to success is the dependencies that existed among the attributes of

the high-dimensional distributions. Also, by imposing sparsity on inputs, we can effectively

prevent the DAE from over-fitting.

5.3.3 Loss metric

Since the final recommendation approach (shown in Section 5) depends on the orders

of the predictive performance rather than the exact estimated values, it is expected that

the outputs of DAE can better preserve the ranks of the entries of an input. Therefore,

the rank-based loss functions are more suitable for our purpose, while the classical mean

square loss is nonsensitive to the ranks of patterns. We adopt binary cross-entropy as the

loss function in this paper, which is defined as

L(y,ypred) =
m∑
i=1

yi log y
pred
i + (1− yi) log (1− ypredi). (5.3)

It is shown in the literature that binary cross-entropy (5.3) is rank-sensitive [117] and min-

imizing (5.3) is equivalent to maximizing NDCG [118], a popular rank-based evaluation

metric, and a larger NDCG means the orders of entries from two items appear to be more

122

Algorithm 6 DAE

Input: Training data: Y, keeping ratio: ϵ, number of iterations of pre-training:
max iter pre, number of iterations of fine-tuning: max iter fine

Output: Trained DAE model: encoder hθ and decoder gθ′

1: Preset regularization parameters: β
2: Initialize network structure h, g and parameters θ, θ′

3: #Pre-training

4: for j=1:max iter pre do
5: ỹi = vϵ(yi), i = 1, 2, · · · , n
6: Updating θ, θ′: θ, θ′ = argminθ,θ′ F (θ, θ

′) = 1
n

∑n
i=1 L(yi, gθ′(hθ(ỹi))) +R(θ) +R(θ′)

7: end for
8: #Fine-tuning

9: for j=1:max iter fine do
10: Updating θ, θ′: θ, θ′ = argminθ,θ′ F (θ, θ

′) = 1
n

∑n
i=1 L(yi, gθ′(hθ(yi))) +R(θ) +R(θ′)

11: end for

similar. Utilizing the rank-based loss metric for meta-learning is one of our important ap-

proaches in this chapter.

5.4 META-LEARNING VIA DAE

In this section, we detail the training of the DAE model as well as how to make a

performance prediction via the well-trained DAE. Suppose that we have a collection of

historical classification problems D = {D1,D2, · · · ,Dn}, and the corresponding classification

performance is evaluated, denoted as Y = [y1,y2, · · · ,yn], where yj ∈ Rm, j = 1, 2, · · · , n

and m is the dimension of the configuration space of CASH problem. The training procedure

of DAE consists of pre-training and fine-tuning.

Pre-training: Let ϵ ∈ (0, 1) be the keeping ratio of corruptions, i.e., (1−ϵ)m entries of

a data vector yi will be randomly selected and replaced by zeros, and let v be the corruption

function, namely, ỹi = vϵ(yi), i = 1, 2, · · · , n. During each iteration, training data Y is

corrupted as Ỹ = [ỹ1, ỹ2, · · · , ỹn] and it is fed to DAE to update parameters θ and θ′ using

Adam algorithm. The updating ends after a maximum number of iterations (max iter pre)

123

is reached.

Fine-tuning: In contrast, during the fine-tuning phase, the uncorrupted training data

Y is fed to the pre-trained DAE model in every iteration. Similarly, the updating ends after

a maximum number of iterations (max iter fine) is reached.

This procedure is displayed in Algorithm 6. After the training process is finished, for a

new given problem D , the performance of the entire CASH search space is predicted by using

the following two strategies: cold-starting and warm-starting recommendation, respectively.

5.4.1 Cold-starting recommendation

This method adopts the denoising principle. We first randomly select some configu-

rations, denoted as Ω̃A, from ΩA and evaluate them on D to generate an incomplete per-

formance vector ỹ, where the entries are zeros if the corresponding configurations are not

evaluated, then it is fed to the trained DAE to obtain the predictive performance over the

entire configuration space, denoted as

ypred = gθ′(hθ(ỹ)). (5.4)

Since this prediction depends on the evaluation of configurations, we call this approach cold-

starting DAE. The functionality of the cold-starting DAE is presented in Algorithm 7, where

ceil(·) is the function of rounding up to an integer.

5.4.2 Warm-starting recommendation

To improve efficiency in applications, we propose a warm-starting recommendation

approach based on the meta-features of problems and the trained DAE model. Let f be the

124

Algorithm 7 Cold-starting DAE

Input: new problem: D , keeping ratio: ϵ, trained encoder: hθ, trained decoder: gθ′ ,
configuration space: ΩA , classification performance metric: P
Output: predictive performance for D : ypred

1: Corrupted performance vector: ỹ = 0
2: for i = 1 :ceil(|ΩA |ϵ) do
3: Pick a configuration randomly (A ,ω)j from ΩA , j is the index of this configuration

in ΩA

4: ỹj = V (P ,Aω,D)
5: Evaluation with no replacement: ΩA = ΩA \ (A ,ω)j

6: end for
7: Performance prediction: ypred = gθ′(hθ(ỹ))

Figure 5.3: The illustration of the performance estimation of the warm-starting DAE com-
bined with MMR sW and the trained decoder gθ′ , where f is the meta-feature extractor.
x, z, and ypred stand for meta-features, latent features, and the estimated performance, re-
spectively.

meta-feature extractor, then the meta-features of the historical problems can be represented

as

xi = f(Di) ∈ Rr, i = 1, 2, · · · , n.

Next, we extract the latent features from the training data, which is formulated as

zi = hθ(xi) ∈ Rd, i = 1, 2, · · · , n.

125

Notice that here we use clean inputs. Finally, the relationship between the meta-features and

the latent features is modeled using a kernel multivariate multiple regression (MMR) where

the meta-features are the predictors while the latent features are the responses. Denote this

MMR model as sW, where W is a coefficient matrix, then the loss function is given by

F (W) =
1

2

n∑
i=1

∥zi − sW(ϕ(xi))∥22 +
β′

2
∥W∥2F , (5.5)

where β′ > 0 is a regularization parameter, ϕ is a nonlinear mapping, and sW(ϕ(xi)) =

W⊤ϕ(xi). The global optimal solution for (5.5) can be obtained by

W = ϕ(X)(β′In +KXX)
−1Z⊤,

where (KXX)ij = k(xi,xj) = ϕ(xi)
⊤ϕ(xj), ϕ(X) = [ϕ(x1), · · · , ϕ(xn)], and Z = [z1, · · · , zn].

Note that k(·, ·) represents various kernel functions, e.g., RBF or polynomial kernel. Then,

it is combined with the decoder gθ′ of DAE to produce a new network architecture which is

deployed for the performance estimation as described in Figure 5.3.

To make a prediction for a new problem D , we first extract its meta-feature x = f(D) ∈

Rr, then feed it to the combined network to obtain an estimation, namely,

ypred = gθ′(sW(ϕ(x))). (5.6)

This warm-starting strategy along with prediction is shown in Algorithm 8.

126

Algorithm 8 Warm-starting DAE

Input: encoder: hθ, decoder: gθ′ , training data: Y, meta-feature extractor: f , historical
problems: {D1, · · · ,Dn}, new problem: D , regularization parameter: β′

Output: predictive performance for D : ypred

1: Meta-feature extraction: xi = f(Di) ∈ Rr, i = 1, 2, · · · , n
2: Latent feature extraction: zi = hθ(yi) ∈ Rd, i = 1, 2, · · · , n
3: W = ϕ(X)(β′In +KXX)

−1Z⊤

4: Prediction:
5: Meta-feature extraction: x = f(D) ∈ Rr

6: Performance prediction: ypred = gθ′(sW(ϕ(x)))

5.5 AUTOMATIC CONFIGURATION RECOMMENDATION

Based on our proposed DAE model and the general meta-learning architecture [42], we

design an automatic classification configuration recommendation system and its workflow is

illustrated in Figure 5.4. This system includes two phases: training and recommendation.

5.5.1 Training stage

The process of DAE model training and prediction using the given performance data

and meta-features has been shown previously. Next, we will address how to obtain these two

types of metadata.

Historical performance evaluation

Before we present the historical performance evaluation method, we first give the con-

figuration space of the CASH problem being considered. To generate the candidate classifier

pool, we adopt 11 commonly-used classifiers in the literature, they are SVM, decision tree

(DT), extra tree (ET), random forest (RF), AdaBoost, Bagging, KNN, LDA, QDA, multi-

layer perceptron (MLP), and logistic regression (LR), respectively. The important hyperpa-

rameters and their search ranges of each classifier are suggested by the literature [48, 47, 71]

and scikit-learn library [72], and we totally have 4893 points in the configuration space

127

Figure 5.4: The illustration of meta-learning architecture based on our proposed DAE ap-
proach (cold-starting and warm-starting).

of CASH problem. This setting can cope with most of the problems in real scenarios. The

number of hyperparameters and the size of each hyperparameter space of classifiers are sum-

marized in Table 5.1, and more detailed information about the individual entries and ranges

of hyperparameters can be found in Appendix VI.

Now suppose we have n historical classification problems D = {D1,D2, · · · ,Dn} and

the configuration search space ΩA = Ω(1) ∪ Ω(2) ∪ · · · ∪ Ω(a). We determine the historical

classification performance Y = {y1,y2, · · · ,yn} on the historical problems using 10-fold

cross-validation. The detailed process of cross-validation can be found in Chapter 2.

Meta-feature extraction

The extraction of a meta-feature contains the computations of a set of metrics, called the

meta-measures as defined. Based on our setting, there are eight types of meta-features [105]

that are available, they are statistics & information-theory (SIT), landmarking (LM), relative

landmarking (RL), problem complexity (PC), model structure (MS), structural information

(SI), concept-based (Con), and clustering (Clu), respectively. To implement these meta-

128

Table 5.1: The summarization of the adopted candidate classifiers in terms of the number
of hyperparameters and configurations.

Classifiers #Hyperparameters #Configurations

AdaBoost 2 70
Bagging 4 360
DT 3 760
ET 4 760
KNN 3 180
LDA 2 55
LR 3 796
MLP 4 72
QDA 1 11
RF 4 1520
SVM 2 399

Total 31 4983

features, we adopt the public Python library pymfe [23] in our system, the meta-measures

deployed and their definitions can be found online1. After the meta-features are acquired,

we normalize each meta-measure into interval [0, 1] using the min-max scaling strategy to

eliminate the bias possibly caused by some large-scale meta-measures. Some meta-measures

that have too many missing values are deleted to avoid biases.

5.5.2 Recommendation

As we showed in Section 4, when a DAE is trained on the historical problems, then

the classification performance of a new problem D can be predicted either by ypred =

gθ′(sW(ϕ(x))) (warm-starting), where x = f(D) is the meta-feature vector of D , or by

ypred = gθ′(hθ(ỹ)) (cold-starting), where ỹ is the evaluated real performance of D on a small

proportion of the search space ΩA . At last, we show how the recommended configurations

for problem D are determined based on the estimated performance. We sort the entries of

the predictive performance vector ypred = [ypred1 , ypred2 , · · · , ypredm]⊤ in descending order as

{ypredi1
, ypredi2

, · · · , ypredim
},

1https://pymfe.readthedocs.io/en/latest/auto pages/meta features description.html

129

where ypredi1
≥ ypredi2

≥ · · · ≥ ypredim
. The configuration that has the highest predictive perfor-

mance is thus recommended for this new problem D , i.e.,

(A ,ω)r = ΩA {i1},

where ΩA {i1} indicates the (i1)
th element of the configuration space ΩA . Since the best

configuration for a problem usually is not unique, multiple candidates for D , i.e.,

{(A ,ω)1r, · · · , (A ,ω)cr} = ΩA {i1, · · · , ic}, (5.7)

where (A ,ω)ir indicates the i
th-order recommendation and c≪ m, can also be recommended.

5.6 EXPERIMENTS

In this section, we empirically test the effectiveness of our proposed recommendation

approach. We first present our experimental settings, including evaluated classification prob-

lems, comparative methods, and recommendation performance evaluation metrics, and then

discuss the empirical results from different aspects.

5.6.1 Experimental setup

Classification problems

We collect 127 classification problems from the well-known UCI machine learning repos-

itory2, in which 82 problems are used as historical problems for training the meta-learner

model (e.g., DAE) and the rest of 45 problems are used as testing (“new”) problems. The

range of the problem sizes is from 88 to 78K, which covers the most of problems often seen in

2http://archive.ics.uci.edu/ml/index.php

130

real applications. The range of the number of attributes (classes) is from 2 to 1558 (2 to 11).

Other classification problems with a different number of dimensions and classes can be added

to the proposed system directly without technical difficulty. The summarized information

about the training and testing problems can be found in Appendix I.

Every selected problem is preprocessed by the following criteria: 1) data instances that

contain missing values are removed; 2) each attribute is normalized using min-max scaling

to ensure every attribute is equally important; 3) some attributes that have only one value

are deleted too; 4) to perform a stratified 10-fold cross-validation, some classes of a problem

that have less than 10 data instances are removed.

Comparative methods

Since the cold-starting DAE needs partially evaluate some configurations to obtain

masked input data, we next verify if the performance of DAE is better than the best-evaluated

configuration. Thus, we compare it to three search algorithms, such as random search (RS),

SMBO, and active test (AT). For a given keeping ratio ϵ, then ceil(|ΩA|ϵ) configurations

will be searched by each algorithm, and DAE will be trained and tested using the same

ϵ. The cold-starting DAE is also compared to the cold-starting matrix factorization-based

collaborative filtering [18, 47], denoted as MFCF hereafter.

The warm-starting DAE is compared to

• the warm-starting MFCF [18], where we adopt the warm-starting strategy we deployed

in Section 4.2: an MMR sW is trained to connect the meta-features of problems to the

latent features of metadata learned by MFCF, then the predictive performance on new

problem D is given by ypred = W⋆sW(ϕ(x)) where x is the meta-feature of problem

131

Table 5.2: The parameter settings for DAE, MFCF, KKNN, and MLP deployed in the
experiment with respect to names, usage, and values.
Approaches Parameters Usage Values

DAE

net struc construct a DAE architecture m-2048-512-10 (symmetric)
activ fun nonlinear transformation sigmoid
max iter p iterations of pre-training 300
max iter f iterations of fine-tuning 400
ρ learning rate 1e-3
β regularization coefficient 1e-2
L loss function binary cross-entropy
k(·, ·) kernel function for MMR RBF

MFCF

d dim of latent variable 10
max iter iterations of training 500
ρ learning rate 1e-4
αCF regularization coefficient 100
βCF regularization coefficient 100
k(·, ·) kernel function for MMR RBF

KKNN k(·, ·) kernel function RBF

MLP

net struc neural network architecture r-10-512-2048-m
activ fun nonlinear transformation sigmoid
max iter iterations of training 500
ρ learning rate 1e-3
β regularization coefficient 1e-3
L loss function binary cross-entropy

D and W⋆ is gained from MFCF;

• the similarity-based recommendation in which KNN [16] is used as the meta-learner

and the Euclidean distance is adopted as the similarity measure;

• kernel KNN regression [55], where the prediction is given by ypred = 1
S

∑n
i=1 k(xi,x)yi

where S =
∑n

i=1 k(xi,x);

• multi-layer perceptron (MLP) [22] with the same structure of our warm-starting struc-

ture which is directly trained by feeding meta-features and the labels are the perfor-

mance data on the historical problems. Our goal is to show that the learned latent

features are capable of improving the performance of a neural network-based meta-

learner;

• random search and SMBO whose search time is the time used for the meta-feature

132

extractions. Here the time consumed for the offline stage of our architecture is excluded

since it can be accomplished with a flexible schedule. Here, we focus on the online stage,

which is critical for the learning task discussed in this paper.

Evaluation metrics

We evaluate the performance of each approach using four metrics: classification accu-

racy rate (CA), recommendation accuracy rate (RA), hit rate (HR), and normalized dis-

counted cumulative gain (NDCG), respectively. The first three are widely considered in

meta-learning [15, 16, 87], while the last one is commonly used in recommender system

studies [88].

Parameter setting in experiment

Since each method exploited in the experiment involves certain important parameters

that should be well-determined, we summarize them in Table 5.2. Notice that DAE and

MFCF share the same keeping ratio ϵ and the dimension of latent variables (we set it to

10); warm-starting DAE and MLP share the same network structure, activation function,

learning rate, and loss function. Other important parameter settings will be specified later.

5.6.2 Empirical results

This section divides into four parts. The first and the second parts show the distribution

of the extracted latent variables and the recommendation performance of cold-starting DAE,

cold-starting MFCF, RS, AT, and SMBO. The third one reports the performance of warm-

starting DAE, warm-starting MFCF, KNN, KKNN, and MLP. The fourth part studies the

performance variation of warm-starting DAE when different levels of corruption are deployed.

For each dataset, we recommend the first three best predictive configurations, i.e., c = 3 in

133

(5.7), and then the averaged performance is reported.

Latent variables

Under our framework, we show that the latent features not only can preserve the main

structure of the high-dimensional configuration space but also maintain its generalization

ability on unknown problems. To illustrate the distributions of latent features, we pursue the

following steps, similar to [18]. Firstly, we split the training data into several clusters using

the k-means algorithm where the number of clusters is suggested by Silhouette score [119].

Then the multidimensional scaling [120] is deployed to map the both configuration space and

the latent space into a 2-dimensional space and each cluster is colored. Multidimensional

scaling is known as a powerful tool that projects patterns to a lower dimensional subspace

while maintaining the dissimilarity, or distance, among each pair of patterns. As shown in

this section, the obtained 2-dimensional patterns can reflect the distributed information of

the original spaces.

The visualizations of the latent features of DAE and MFCF are depicted in Figure 5.5.

To show the impact of the keeping ratio on the latent features, we select three keeping ratios,

i.e., ϵ = 0.001, 0.5, and 1, which can be explained as very serious corruption, middle-level

corruption, and no corruption, respectively. One can observe that: 1) when ϵ = 0.001,

latent features generated by MFCF do not present an explainable structure and the clusters

are inseparable. As the increasing of ϵ, MFCF gradually produces the latent features that

almost preserve the structure of the original configuration space, but the distribution along

the y-axis is severely compressed; 2) in contrast, DAE gives a different latent space over these

three keeping ratios. All points are lying on a parabola-like curve and each cluster gathers

134

-30 -20 -10 0 10 20 30 40 50

-4

-2

0

2

4

6

8
Original space

-6 -4 -2 0 2 4 6 8 10

-10

-6

-2

2

6

10
MFCF (=0.001)

-60 -30 0 30 60 90 120

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
MFCF (=0.5)

-200 100 0 100 200 300

-3

-1

1

3

5
MFCF (=1)

-1 -0.5 0 0.5 1 1.5

-0.10

-0.05

0.00

0.05

0.10

0.15
DAE (=0.001)

-1.5 -1 -0.5 0 0.5 1 1.5

-0.5

0.0

0.5

1.0

1.5
DAE (=0.5)

-1.5 -1 -0.5 0 0.5 1 1.5

-0.4

-0.2

0.0

0.2

0.4

0.6
DAE (=1)

Figure 5.5: The distributions of the original configuration space (top), latent space of MFCF
(middle), and latent space of DAE (bottom) on training instances when ϵ = 0.001, 0.5, and
1. The two-dimensional data is acquired by adopting multidimensional scaling. One color
represents one clustering and they are determined by the k-means algorithm.

around one location. The reason that leads to these two different distributions is that MFCF

is a linear model so the extracted latent features tend to maintain their original distribution,

our DAE model, however, is a neural network model, in which sigmoid activation function is

adopted, and captures the nonlinear structure of the input space; 3) especially when ϵ = 0.5,

clusters can be easily classified for DAE. When there is no corruption for inputs (ϵ = 1),

DAE does not produce the best latent features, demonstrating that the denoising strategy

indeed improves the model performance. Since MFCF specializes in primary distribution

preservation, it may lose its ability to generalize for unknown instances. The later reported

empirical results also support these conclusions.

135

Effectiveness of cold-starting DAE

Since evaluating a large group of configurations is time-consuming and search algo-

rithms can usually find the applicable configurations, we set keeping ratio ϵ = 0.0006 in this

experiment, i.e., only three configurations are kept for training DAE on historical problems

and testing on the new problems, to show the merits of our method. We repeat 10 times

recommendations for DAE, MFCF, RS, and SMBO to reduce the influence of randomness,

the comparison results are summarized in Table 5.3 where ‘−’ means the corresponding data

is unavailable. As we can see, our DAE method outperforms both MFCF and search algo-

rithms such as RS, AT and SMBO under the applied evaluation metrics. DAE has an ACA of

77.02% whereas the ACA of MFCF is 75.94%. For those search algorithms, AT has the best

ACA of 72.58%, and RS is slightly better than SMBO. This is because when search rounds

are severely limited, finding a promising configuration is challenging. We can also reach the

same conclusion from the results of ARA. Although the HR of MFCF is higher than that of

DAE, the actual difference is only one out of 135 recommendations. The results of NDCG

under different positions ρ show how close are the top-ρ recommended configurations to the

real ranks. One can see that the NDCG@1 of DAE is 0.8919, and it is slowly declining when

ρ is increasing but it is 0.8697 when ρ = 20, which shows that the effectiveness of the top-20

recommendations of DAE is stable with classification ability; however, MFCF has the lowest

NDCG (0.7526) when ρ = 1 and it is increasing as ρ increases, which is not appreciated in

real scenarios. On the other hand, we find that AT has the highest NDCG of 0.9164 for the

optimal one evaluated so far but NDCG@3 declined sharply to 0.7747. SMBO has a higher

NDCG than RS although it is inferior to RS in terms of ACA, ARA, and HR, which implies

136

drug-alcohol

wine-quality-white

wine-quality-red

wholesale

cargo

firm
-teacher

yeast

parkinson-speech

st-germ
an-num

eric

steelplates-faults

crowdsourced-m
apping

glass
diabetic-retinopathy

m
adelon

vowel-context

online-shoppers

horse
c olic

student-evaluation

vertebral-colum
n-2

sports-article

page-blocks

cb-vowel

waveform

gam
m

a-telescope

lym
phography

flowm
eter-diagnostics

st-landsat

wilt
forest-types

m
b-prom

oter

cardiotocography

CNAE-9

shuttle-test

uspst

spam
base

m
b-splice

wearable-com
puting

chess-krvkp

occupancy-detection

im
age-segm

entation

wall-following

segm
ent

audit-risk

grid-stability

autism
-adult

10
20
30
40
50
60
70
80
90

100

C
A

 (
%

)

MFCF RS AT SMBO DAE

drug-alcohol

wholesale

wine-quality-red

wine-quality-white

firm
-teacher

student-evaluation

m
adelon

diabetic-retinopathy

horse
c olic

st-germ
an-num

eric

online-shoppers

cargo

vertebral-colum
n-2

parkinson-speech

crowdsourced-m
apping

wilt
cb-vowel

m
b-prom

oter

flowm
eter-diagnostics

vowel-context

glass
occupancy-detection

lym
phography

steelplates-faults

sports-article

cardiotocography

chess-krvkp

page-blocks

yeast

shuttle-test

waveform

uspst

CNAE-9

forest-types

wearable-com
puting

st-landsat

m
b-splice

wall-following

gam
m

a-telescope

spam
base

im
age-segm

entation

segm
ent

audit-risk

grid-stability

autism
-adult

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

MFCF RS AT SMBO DAE

Figure 5.6: The comparisons of CA and RA between MFCF, RS, AT, SMBO, and DAE on each testing dataset.

Table 5.3: The comparisons of ACA, ARA, HR, and NDCG between MFCF, RS, SMBO, AT, and DAE. The ACA of the real
optimal configurations over testing problems is 81.78%.

Methods ACA ARA HR NDCG@1 NDCG@3 NDCG@5 NDCG@7 NDCG@10 NDCG@20
DAE 77.02 86.64 74.81 0.8919 0.8862 0.8794 0.8734 0.8739 0.8697
MFCF 75.94 84.04 75.56 0.7526 0.7675 0.7770 0.7835 0.7889 0.7944
AT 72.58 78.94 60.00 0.9164 0.7747 - - - -
RS 68.30 69.66 42.44 0.7506 0.5676 - - - -
SMBO 67.10 68.32 40.74 0.8585 0.6662 - - - -

137

Table 5.4: The p-values of Wilcoxon signed-rank test on CA and RA. We accept the alter-
native hypothesis Ha if the p-value is less than 0.05. Here ‘>’ means overpass.

Ha CA RA
DAE>MFCF 0.038 0.033
DAE>RS 0.000 0.000
DAE>AT 0.000 0.000
DAE>SMBO 0.000 0.000

that the optimal configuration found by SMBO is better than that of RS but the other order

recommendations of SMBO are mediocre.

To show the performance differences on each testing problem, we display the scatter

plots in Figure 5.6 concerning CA and RA where the order of dataset ID is rearranged in

ascending order based on the performance of DAE. One can observe that DAE can tie with

or overpass MFCF, RS, AT, and SMBO on most of the problems with respect to CA, and the

differences are more obvious for RA. Furthermore, to show if these differences are statistically

significant, we applied the Wilcoxon signed-rank test at 0.05 significance for each pair, e.g.,

DAE versus MFCF, and the null hypothesis is that DAE does not outperform MFCF (or RS,

AT, and SMBO) significantly. We report the p-values of the test in Table 5.4, and one can

see that all p-values are less than 0.05 so we accept the alternative hypothesis, namely DAE

overpasses MFCF, RS, AT, and SMBO statistically significantly. Above all, our method can

suggest much better configurations than search algorithms when the allowable search rounds

are severely insufficient.

Effectiveness of warm-starting DAE

To show the performance of the warm-starting DAE with other meta-learning baselines,

we adopt all eight state-of-the-art meta-features, such as SIT, MS, PC, LM, RL, Con, SI,

and Clu, and report their outcomes separately. We also unify these eight meta-features into

a single meta-feature, dubbed Uni, whose performance is investigated too. The parameters

138

1 3 5 7 10 20

0.70

0.74

0.78

0.82

0.86

N
D

C
G

MS

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

0.70

0.74

0.78

0.82

0.86

N
D

C
G

SIT

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

p

0.70

0.74

0.78

0.82

0.86

0.90

N
D

C
G

PC

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

0.70

0.74

0.78

0.82

0.86

N
D

C
G

LM

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

0.70

0.74

0.78

0.82

0.86

0.90

N
D

C
G

RL

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

0.70

0.74

0.78

0.80

0.86

N
D

C
G

Clu

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

0.70

0.74

0.78

0.82

0.86

N
D

C
G

Con

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

0.70

0.74

0.78

0.82

0.86

0.90

N
D

C
G

SI

DAE

KNN

KKNN

BPNN

MFCF

1 3 5 7 10 20

0.70

0.74

0.78

0.82

0.86

N
D

C
G

Uni

DAE

KNN

KKNN

BPNN

MFCF

Figure 5.7: The comparisons of NDCG between KNN, KKNN, MLP, MFCF, and DAE. We
do not give the NDCGs about RS and SMBO since they are not available.

139

Table 5.5: The comparisons of ACA (%), ARA (%), and HR (%) between KNN, KKNN, MLP, MFCF, RS, SMBO, and DAE
when nine types of meta-features are employed. The maximal value of each column is highlighted.

Methods MS SIT PC
ACA ARA HR ACA ARA HR ACA ARA HR

DAE 77.31 87.45 81.48 77.33 87.39 85.19 77.91 89.30 85.19
KNN 75.96 84.31 77.04 76.61 85.31 75.56 76.70 85.82 78.52
KKNN 75.94 84.17 76.30 76.40 85.00 76.30 76.75 86.23 78.52
MLP 75.97 84.59 77.04 76.60 86.07 79.26 76.05 84.75 74.81
MFCF 75.84 83.69 76.30 75.84 83.69 76.30 75.84 83.69 75.84
RS 65.30 64.25 13.33 64.91 64.42 13.33 65.78 65.23 17.78
SMBO 65.80 65.16 15.56 65.51 64.62 15.56 64.21 63.04 6.67

Methods LM RL Clu
ACA ARA HR ACA ARA HR ACA ARA HR

DAE 76.99 86.61 83.70 77.75 88.84 84.44 77.28 87.30 83.70
KNN 74.85 83.29 74.81 77.27 86.35 75.56 75.61 84.67 74.81
KKNN 75.82 84.32 76.30 76.93 85.82 77.78 76.17 85.32 75.56
MLP 76.00 84.52 73.33 76.72 85.88 81.48 75.60 84.38 75.56
MFCF 75.84 83.69 76.30 75.84 83.69 76.30 75.84 83.69 75.84
RS 65.81 65.58 13.33 66.54 66.10 15.56 65.86 66.19 17.78
SMBO 65.06 63.10 13.33 65.81 65.80 22.22 65.14 64.58 13.33

Methods Con SI Uni
ACA ARA HR ACA ARA HR ACA ARA HR

DAE 77.40 86.98 81.48 76.98 87.72 78.52 77.35 87.38 85.19
KNN 76.61 85.53 72.59 76.16 84.57 75.56 75.83 84.09 77.78
KKNN 76.60 86.10 77.78 76.09 85.11 73.33 76.13 85.49 80.74
MLP 76.12 84.55 76.30 75.87 84.57 73.33 75.91 84.64 77.78
MFCF 75.84 83.69 76.30 75.84 83.69 76.30 75.84 83.69 75.84
RS 65.88 65.33 11.11 64.91 63.18 8.89 65.09 64.03 11.11
SMBO 63.85 61.20 15.56 65.15 63.60 15.56 63.03 57.81 15.56

140

involved in each approach are determined by grid search, e.g., RBF kernel width ‘gamma’ in

MMR (warm-starting model for DAE and MFCF) and KKNN where the range for ‘gamma’

is given by {1e− 4, 1e− 3, 1e− 2, 1e− 1, 5e− 1, 1, 5, 1e1, 5e1, 1e2, 5e2, 1e3}, and the number

of neighbors ‘k’ in kNN where the range for ‘k’ is given by {1, 2, · · · , 50}. The keeping

ratios ϵ for DAE and MFCF training are set to 0.1. Similarly, to eliminate the randomness,

we report the average performance of ten times repetition for DAE, MFCF, MLP, RS, and

SMBO. The comparative results are summarized in Table 5.5 (ACA, ARA, and HR) and

Figure 5.7 (NDCG). Here the problem ‘hand postures‘’ is excluded from the historical

problems in this comparison due to the fact that its PC, Con, and Clu meta-features contain

too many missing values.

One can observe that: 1) meta-learning-based approaches outperform RS and SMBO

dramatically throughout the nine meta-features, showing their effectiveness and efficiency.

Since the allowable time for the search is limited, there is no obvious performance differ-

ence between RS and SMBO; 2) the underlying meta-learning approaches show different

performance on each meta-feature deployed, except for MFCF, which performs consistently

throughout the deployed meta-features. PC and RL generate the best results, SIT and Uni

take the second place, MS, LM, and Clu occupy the tertiary, and Con and SI perform the

worst; 3) DAE outperforms the comparative meta-learning baselines, namely, warm-starting

MFCF, MLP, KNN, and KKNN, demonstrating its superior recommendation effectiveness

for the CASH problem. Especially, DAE-PC has an ACA of 77.91%, ARA of 89.30%, and

HR of 85.19%; however, other baselines achieve the best ACA of 76.75% (KKNN), ARA

of 86.23% (KKNN), and HR of 78.52% (KNN and KKNN); 4) Among these four compar-

ative baselines, cold-starting MFCF has the mediocre performance while the other three,

141

e.g., KNN, KKNN, and MLP, have similar performance, and none of them show superior

recommendation capacity; 5) In terms of NDCG, there is no doubt that DAE uniformly

outweighs the other four baselines, demonstrating its potential of recommending promising

configurations. Additionally, we notice that DAE-SI owns the highest NDCG while the av-

erage effectiveness of the first three recommendations is less satisfying as shown in Table

5.5. By looking into these three recommendations individually, we find that the second

and third-order recommendations do not produce good results with an ACA of 76.82%; 6)

The overall performance of warm-starting DAE outperforms that of the cold-starting DAE

through different meta-features. Nevertheless, the cold-starting DAE tends to have a higher

NDCG.

To show the performance differences among the baselines on each dataset, we only

display the comparisons of RA in Figure 5.8 since we can get the same results from CA and

it is easier to tell the performance differences of baselines on RA. We also only give the plots

for SIT, PC, and RL to save space. As we can see from Figure 5.8, our method, DAE, can

perform better than or the same as the other four baselines on most of the datasets, and it

has stable performance. The RA of DAE is over 80% on 38 out of 45 cases under the three

investigated meta-features, which proves the potential of recommending the hyperparameters

with the high classification ability of our method. However, other baselines tend to produce

mediocre recommendations sometimes; for instance, on dataset drug-alcohol (ID is 9),

DAE has an RA that is over 90% but the RA of KNN, KKNN, and MFCF is less than 50%

and MLP is better with an average RA of 60%. Similarly, we can take a look at dataset

shuttle-test (ID is 40). We also observe that DAE failed on datasets madelon and vargo

(ID is 21 and 31, respectively) when SIT meta-feature is employed but it does the best job

142

m
adelon

cargo

wholesale

wine-quality-red

horse
c olic

wine-quality-white

online-shoppers

m
b-splice

diabetic-retinopathy

st-germ
an-num

eric

cb-vowel

student-evaluation

wall-following

m
b-prom

oter

vertebral-colum
n-2

glass
parkinson-speech

wilt
crowdsourced-m

apping

flowm
eter-diagnostics

page-blocks

occupancy-detection

lym
phography

drug-alcohol

cardiotocography

sports-article

steelplates-faults

yeast

chess-krvkp

firm
-teacher

shuttle-test

gam
m

a-telescope

uspst

vowel-context

forest-types

waveform

wearable-com
puting

st-landsat

CNAE-9

spam
base

segm
ent

im
age-segm

entation

audit-risk

grid-stability

autism
-adult

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

SIT

KNN KKNN BPNN MFCF DAE

wholesale

wine-quality-red

horse
c olic

wine-quality-white

m
adelon

online-shoppers

cargo

diabetic-retinopathy

vertebral-colum
n-2

st-germ
an-num

eric

cb-vowel

wilt
student-evaluation

m
b-prom

oter

crowdsourced-m
apping

glass
parkinson-speech

flowm
eter-diagnostics

occupancy-detection

lym
phography

drug-alcohol

cardiotocography

yeast

chess-krvkp

firm
-teacher

sports-article

page-blocks

steelplates-faults

shuttle-test

waveform

uspst

CNAE-9

vowel-context

forest-types

wearable-com
puting

st-landsat

m
b-splice

wall-following

gam
m

a-telescope

spam
base

segm
ent

im
age-segm

entation

audit-risk

grid-stability

autism
-adult

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

PC

KNN KKNN BPNN MFCF DAE

wholesale

horse
c olic

wine-quality-red

wine-quality-white

m
adelon

cargo

online-shoppers

vertebral-colum
n-2

m
b-splice

diabetic-retinopathy

st-germ
an-num

eric

lym
phography

cb-vowel

student-evaluation

m
b-prom

oter

parkinson-speech

page-blocks

glass
crowdsourced-m

apping

flowm
eter-diagnostics

drug-alcohol

wilt
occupancy-detection

cardiotocography

chess-krvkp

firm
-teacher

sports-article

steelplates-faults

shuttle-test

yeast

waveform

uspst

vowel-context

forest-types

wearable-com
puting

st-landsat

wall-following

CNAE-9

spam
base

gam
m

a-telescope

segm
ent

im
age-segm

entation

audit-risk

grid-stability

autism
-adult

10
20
30
40
50
60
70
80
90

100

R
A

 (
%

)

RL

KNN KKNN BPNN MFCF DAE

Figure 5.8: The comparisons of RA between KNN, KKNN, MLP, MFCF, and DAE on each testing dataset.

143

Table 5.6: The p-values of Wilcoxon signed-rank test on each type of meta-feature. We
accept the alternative hypothesis Ha when the p-value is less than 0.05.

Metric Ha MS SIT PC LM RL Clu Con SI Uni

CA

DAE>KNN 0.016 0.043 0.241 0.011 0.131 0.009 0.035 0.088 0.011
DAE>KKNN 0.019 0.028 0.041 0.018 0.036 0.019 0.138 0.036 0.033
DAE>MLP 0.000 0.022 0.000 0.013 0.000 0.006 0.000 0.009 0.005
DAE>MFCF 0.009 0.000 0.003 0.027 0.000 0.000 0.013 0.072 0.002
DAE>RS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DAE>SMBO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RA

DAE>KNN 0.016 0.058 0.219 0.019 0.138 0.028 0.022 0.107 0.013
DAE>KKNN 0.017 0.026 0.037 0.028 0.040 0.022 0.168 0.038 0.054
DAE>MLP 0.000 0.024 0.000 0.025 0.000 0.009 0.001 0.015 0.007
DAE>MFCF 0.008 0.000 0.004 0.053 0.000 0.001 0.016 0.062 0.003
DAE>RS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DAE>SMBO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

using PC and RL meta-features.

We also report the Wilcoxon signed-rank test results in Table 5.6 to statistically compare

DAE with other baselines. We can see that DAE significantly overpasses KNN, KKNN, MLP,

and MFCF over 31 out of 36 cases for CA, and 28 out of 36 cases for RA, and it significantly

outperforms RS and SMBO in all cases. It is worth mentioning that DAE fails to outweigh

KNN on PC, RL, and SI meta-features, which suggests the potential of the KNN method.

Even though some p-values of the test on SIT, LM, SI, and Uni are larger than 0.05, they

are still close to 0.05 and the significant difference can be guaranteed if we gently decrease

the confidence level.

In summary, we can conclude that our method can suggest more reliable outcomes

compared to other popular meta-learning baselines.

Influence of keeping ratios

In this experiment, we are going to show the influence of the keeping ratio ϵ on the per-

formance of the warm-starting DAE. To do so, we select twelve different values for ϵ, namely,

ϵ ∈ {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1}, which cover the range between “severe

corruption” and “no corruption”. Especially when ϵ = 1, we can see the performance of the

144

0.1 1 10 20 30 40 50 60 70 80 90 100

Keeping Ratio (%)

75

76

77

78
A

C
A

 (
%

)

74

76

78

80

82

84

86

88

90

A
R

A
&

H
R

 (
%

)

DAE-SIT

ACA ARA HR

0.1 1 10 20 30 40 50 60 70 80 90 100

Keeping Ratio (%)

75

76

77

78

A
C

A
 (

%
)

74

76

78

80

82

84

86

88

90

A
R

A
&

H
R

 (
%

)

DAE-PC

ACA ARA HR

0.1 1 10 20 30 40 50 60 70 80 90 100

Keeping Ratio (%)

75

76

77

78

A
C

A
 (

%
)

74

76

78

80

82

84

86

88

90

A
R

A
&

H
R

 (
%

)

DAE-RL

ACA ARA HR

Figure 5.9: The effectiveness of warm-starting DAE when different keeping ratios (ϵ) are
deployed.

warm-starting DAE when the denoising criterion is removed. Also, the optimal parameters

for MMR are determined by grid search. The empirical outcomes (ACA, ARA, and HR)

over three meta-features (SIT, PC, and RL) are depicted in Figure 5.9, and the results of

the other six meta-features are omitted to avoid redundancy.

One can observe that: 1) the performance of DAE-SIT under RA metric is stable when

ϵ is varying from 0.01 to 0.9, but CA and HR are fluctuating gently. For DAE-PC and

DAE-RL, the changes of the three metrics are dramatic and have similar tendencies, i.e.,

the highest scores are obtained when ϵ = 0.1 and 0.8. By examining the extracted latent

features as we did in section 6.2.1, the best DAE model is obtained when keeping ratios are

0.1 and 0.8 where the extracted latent features appear to have the optimal distributions,

i.e., three clusters are well-classified. This is mainly due to the relatively small ratio, as well

as the relatively large ratio, which can better grasp both similarity and dissimilarity among

the training datasets; 2) When data is either severely corrupted (ϵ = 0.001) or completely

clean (ϵ = 1), DAE under the three meta-features does not provide the optimal performance,

which implies the importance of the denoising principle and a proper degree of corruption is

also the key of success; 3) Among the three investigated meta-features, although PC and RL

145

are the most promising to yield satisfying outcomes, they do not have a good HR comparing

to SIT. Also, the performance of PC and RL is sensitive to the applied keeping ratios.

5.7 CONCLUDING REMARKS

In this chapter, we developed a new approach to solving the well-known CASH prob-

lem via integrating the sparse denoising autoencoder approach with meta-learning. A DAE

network is trained to extract the subtle latent features from the high-dimensional config-

uration space of CASH, based on the consensus that two problems should be similar and

share the best configurations when their latent features are quantitatively close. We devel-

oped two strategies for latent feature generation for new problems, i.e., cold-starting and

warm-starting. The first one applies the denoising principle as well, namely, a ‘masked’

performance vector on new problems is generated and fed into the DAE network; the second

approach predicts the latent features using the meta-features of problems through regression

learning. The acquired latent features are finally fed to the decoder network to generate a

performance prediction over the entire configuration space.

We have conducted extensive experiments to show the effectiveness of our approach

under various standard metrics. Compared to the existing baselines, DAE shows the best

recommendation capacity under four commonly-used evaluation metrics. We found that the

warm-starting DAE together with complex meta-features can produce the most desirable

outcomes. A possible improvement in performance can be gained by combining with the

SMBO algorithm which is initialized by the recommendations of DAE if the cost is permis-

sible.

Future work could focus on learning the hierarchical relationships existing in the con-

146

figuration space of the CASH problem. In current literature, including this paper, the con-

figuration space is instantiated as a high-dimensional vector, which may lose some structural

information and hyperparameter dependence. Maintaining a hierarchical structure more

closely may improve the recommendation performance substantially. Such a study will be

reported elsewhere.

147

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this dissertation, we solved the problem of hyperparameter selection under the frame-

work of meta-learning. Compared to traditional search-based algorithms, our approaches do

not need any configuration evaluations during the recommendation phase, which facilitates

the applications of efficient machine learning that are required by nowadays ever-increasing

data. Focusing on the shortages of the existing approaches in meta-learning, we proposed

four new methods which target automatic meta-feature selection and the learning of the

spatial structure of hyperparameter search space. A significant amount of experiments were

conducted on real-world classification problems to verify the effectiveness of our methods,

and promising results have been obtained by comparing them to the state-of-the-art meta-

learning baselines as well as search algorithms.

6.2 FUTURE WORK

Although meta-learning has shown its prospective performance in literature, there are

still many interesting topics that deserve careful investigation in the future.

Meta-feature extraction: Most of the existing meta-features are only suitable for

classification datasets, the applicable ones for other machine learning datasets, such as re-

gression and clustering, are severely limited. This is because of the popularity of classification

algorithms which have drawn the attention of researchers. Therefore, the study of regression

and clustering algorithms in meta-learning is insufficient. In the future, the possible research

topics can be the meta-feature extraction for regression, clustering, or other machine learn-

148

ing datasets. On the other hand, the current meta-features are only suitable for traditional

machine learning datasets, there are no applicable ones for image datasets, which prevents

us to perform automatic hyperparameter selection for state-of-the-art deep neural networks,

such as residual networks and Vision Transformers. Except for the study in this disserta-

tion, we did not find any other related work dealing with the problem of hyperparameter

recommendation for deep neural networks under the framework of meta-learning.

Hierarchical structure-preserving: To preserve the spatial structure of the search

space, we proposed to organize the search space as a multi-dimensional tensor, but this strat-

egy is only suitable for those algorithms that have independent hyperparameters while there

are many scenarios where the search spaces have conditional hyperparameters which present

a complicated hierarchical structure, e.g., the search space of CASH problem. Therefore,

if we can find a data organization approach that preserves the hierarchical structure of the

search space, more useful information can be retained for a successful recommendation.

Deep learning for meta-learning: Deep learning is one of the most popular re-

search topics in recent years because of its outstanding performance in image recognition

and classification. Besides the aforementioned meta-feature extraction of the image datasets

for hyperparameter recommendation of deep neural networks, another promising problem is

to apply deep learning algorithms as recommendation algorithms in meta-learning. In cur-

rent studies, the traditional machine learning algorithms are widely used as recommendation

algorithms and only very simple neural network-based algorithms, such as multi-layer per-

ceptron, are leveraged so far. We plan to investigate the representative deep convolutional

neural networks (CNN) as a meta-learner and the main challenge is how to build a relation-

ship between meta-features and the performance of hyperparameters.

149

REFERENCES

[1] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp.

273–297, 1995.

[2] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and

an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp.

119–139, 1997.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[4] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university press, 1995.

[5] M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated Machine Learning:

Methods, Systems, Challenges, pp. 3–33, 2019.

[6] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine

learning algorithms,” in Advances in Neural Information Processing Systems, 2012, pp. 2951–

2959.

[7] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal of

Machine Learning Research, vol. 13, no. 1, pp. 281–305, 2012.

[8] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: A novel

bandit-based approach to hyperparameter optimization,” The Journal of Machine Learning

Research, vol. 18, no. 1, pp. 6765–6816, 2017.

[9] R. Kohavi and G. H. John, “Automatic parameter selection by minimizing estimated error,”

in Machine Learning Proceedings 1995. Elsevier, 1995, pp. 304–312.

[10] H. Mühlenbein and G. Paass, “From recombination of genes to the estimation of distributions

I. Binary parameters,” in International Conference on Parallel Problem Solving from Nature.

Springer, 1996, pp. 178–187.

[11] X. Guo, J. Yang, C. Wu, C. Wang, and Y. Liang, “A novel LS-SVMs hyper-parameter

selection based on particle swarm optimization,” Neurocomputing, vol. 71, no. 16-18, pp.

3211–3215, 2008.

[12] J. Vanschoren, “Meta-learning,” Automated Machine Learning: Methods, Systems, Chal-

lenges, pp. 35–61, 2019.

[13] P. Brazdil, J. N. v. Rijn, C. Soares, and J. Vanschoren, “Metalearning approaches for algo-

150

rithm selection II,” in Metalearning. Springer, 2022, pp. 77–102.

[14] T. A. Gomes, R. B. Prudêncio, C. Soares, A. L. Rossi, and A. Carvalho, “Combining meta-

learning and search techniques to select parameters for support vector machines,” Neurocom-

puting, vol. 75, no. 1, pp. 3–13, 2012.

[15] Q. Song, G. Wang, and C. Wang, “Automatic recommendation of classification algorithms

based on data set characteristics,” Pattern Recognition, vol. 45, no. 7, pp. 2672–2689, 2012.

[16] L. Deng, W.-S. Chen, and B. Pan, “Automatic classifier selection based on classification com-

plexity,” in Proceedings of the first Chinese Conference on Pattern Recognition and Computer

Vision, 2018, pp. 292–303.

[17] D. Stern, R. Herbrich, T. Graepel, H. Samulowitz, L. Pulina, and A. Tacchella, “Collaborative

expert portfolio management,” in Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence AAAI-10, 2010, pp. 179–184.

[18] M. Mısır and M. Sebag, “Alors: An algorithm recommender system,” Artificial Intelligence,

vol. 244, pp. 291–314, 2017.

[19] B. Bilalli, A. Abelló Gamazo, and T. Aluja Banet, “On the predictive power of meta-features

in OpenML,” International Journal of Applied Mathematics and Computer Science, vol. 27,

no. 4, pp. 697–712, 2017.

[20] S. Y. Sohn, “Meta analysis of classification algorithms for pattern recognition,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 21, no. 11, pp. 1137–1144, 1999.

[21] P. B. Brazdil, C. Soares, and J. Pinto da Costa, “Ranking learning algorithms: Using IBL and

meta-learning on accuracy and time results,” Machine Learning, vol. 50, no. 3, pp. 251–277,

2003.

[22] K. A. Smith, F. Woo, V. Ciesielski, and R. Ibrahim, “Modelling the relationship between

problem characteristics and data mining algorithm performance using neural networks,” in

Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Program-

ming, Data Mining, and Complex Systems, vol. 11. ASME Press, 2001, pp. 356–362.

[23] E. Alcobaça, F. Siqueira, A. Rivolli, L. P. Garcia, J. T. Oliva, A. C. de Carvalho et al.,

“MFE: Towards reproducible meta-feature extraction,” Journal of Machine Learning Re-

search, vol. 21, no. 111, pp. 1–5, 2020.

151

[24] H. Bensusan, C. G. Giraud-Carrier, and C. J. Kennedy, “A higher-order approach to meta-

learning.” ILP Work-in-progress Reports, vol. 35, pp. 33–42, 2000.

[25] Y. Peng, P. A. Flach, C. Soares, and P. Brazdil, “Improved dataset characterization for meta-

learning,” in International Conference on Discovery Science. Springer, 2002, pp. 141–152.

[26] H. Bensusan and C. Giraud-Carrier, “Discovering task neighbourhoods through landmark

learning performances,” in Proceedings of the Fourth European Conference on Principles and

Practice of Knowledge Discovery in Databases, 2000, pp. 325–330.

[27] R. P. W. Duin, E. Pekalska, and D. M. J. Tax, “The characterization of classification problems

by classifier disagreements,” in Proceedings of the Seventeenth International Conference on

Pattern Recognition, 2004, pp. 140–143.

[28] C. Soares, J. Petrak, and P. Brazdil, “Sampling-based relative landmarks: Systematically

test-driving algorithms before choosing,” in Portuguese Conference on Artificial Intelligence.

Springer, 2001, pp. 88–95.

[29] E. Perez and L. A. Rendell, “Learning despite concept variation by finding structure in

attribute-based data,” in In Proceedings of the Thirteenth International Conference on Ma-

chine Learning. Citeseer, 1996.

[30] R. Vilalta, “Understanding accuracy performance through concept characterization and al-

gorithm analysis,” in Proceedings of the ICML-99 Workshop on Recent Advances in Meta-

learning and Future Work, 1999, pp. 3–9.

[31] B. A. Pimentel and A. C. de Carvalho, “A new data characterization for selecting clustering

algorithms using meta-learning,” Information Sciences, vol. 477, pp. 203–219, 2019.

[32] T. K. Ho and M. Basu, “Complexity measures of supervised classification problems,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 289–300, 2002.

[33] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning. Springer, 2019.

[34] A. I. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit, R. R. Griffiths, A. M. Maraval,

H. Jianye, J. Wang, J. Peters et al., “HEBO: Pushing the limits of sample-efficient hyper-

parameter optimisation,” Journal of Artificial Intelligence Research, vol. 74, pp. 1269–1349,

2022.

[35] J. Wu, M. Poloczek, A. G. Wilson, and P. Frazier, “Bayesian optimization with gradients,”

152

Advances in Neural Information Processing Systems, vol. 30, 2017.

[36] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification and hyperparameter

optimization,” in Artificial Intelligence and Statistics. PMLR, 2016, pp. 240–248.

[37] M. Hauschild and M. Pelikan, “An introduction and survey of estimation of distribution

algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 3, pp. 111–128, 2011.

[38] Y. Bengio, “Gradient-based optimization of hyperparameters,” Neural Computation, vol. 12,

no. 8, pp. 1889–1900, 2000.

[39] F. Glover, “Tabu search part I,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206,

1989.

[40] O. Maron and A. W. Moore, “The racing algorithm: Model selection for lazy learners,”

Artificial Intelligence Review, vol. 11, no. 1-5, pp. 193–225, 1997.

[41] G. Luo, “A review of automatic selection methods for machine learning algorithms and hyper-

parameter values,” Network Modeling Analysis in Health Informatics and Bioinformatics,

vol. 5, pp. 1–16, 2016.

[42] J. R. Rice, “The algorithm selection problem,” in Advances in Computers. Elsevier, 1976,

vol. 15, pp. 65–118.

[43] C. Soares, P. B. Brazdil, and P. Kuba, “A meta-learning method to select the kernel width

in support vector regression,” Machine Learning, vol. 54, no. 3, pp. 195–209, 2004.

[44] T. A. F. Gomes, R. B. C. Prudêncio, C. Soares, A. L. D. Rossi, and A. Carvalho, “Combin-

ing meta-learning and search techniques to select parameters for support vector machines,”

Neurocomputing, vol. 75, no. 1, pp. 3–13, 2012.

[45] M. Feurer, J. T. Springenberg, and F. Hutter, “Using meta-learning to initialize bayesian

optimization of hyperparameters,” in Proceedings of the 2014 International Conference on

Meta-learning and Algorithm Selection-Volume 1201. Citeseer, 2014, pp. 3–10.

[46] K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning for algorithm selection,”

ACM Computing Surveys (CSUR), vol. 41, no. 1, pp. 1–25, 2009.

[47] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, “OBOE: Collaborative filtering for AutoML

model selection,” in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2019, pp. 1173–1183.

153

[48] N. Fusi, R. Sheth, and M. Elibol, “Probabilistic matrix factorization for automated machine

learning,” in Advances in Neural Information Processing Systems, 2018, pp. 3348–3357.

[49] R. G. Mantovani, A. L. Rossi, J. Vanschoren, and A. C. de Carvalho, “Meta-learning recom-

mendation of default hyper-parameter values for SVMs in classification tasks,” in MetaSel@

PKDD/ECML, 2015, pp. 80–92.

[50] R. G. Mantovani, A. L. Rossi, J. Vanschoren, B. Bischl, and A. C. Carvalho, “To tune or not

to tune: Recommending when to adjust SVM hyper-parameters via meta-learning,” in 2015

International Joint Conference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–8.

[51] P. Brazdil, J. Gama, and B. Henery, “Characterizing the applicability of classification algo-

rithms using meta-level learning,” in European Conference on Machine Learning. Springer,

1994, pp. 83–102.

[52] S. Ali and K. A. Smith, “On learning algorithm selection for classification,” Applied Soft

Computing, vol. 6, no. 2, pp. 119–138, 2006.

[53] S. Dyrmishi, R. Elshawi, and S. Sakr, “A decision support framework for AutoML systems:

A meta-learning approach,” in 2019 International Conference on Data Mining Workshops

(ICDMW). IEEE, 2019, pp. 97–106.

[54] J. Gama and P. Brazdil, “Characterization of classification algorithms,” in Portuguese Con-

ference on Artificial Intelligence. Springer, 1995, pp. 189–200.

[55] H. Bensusan and A. Kalousis, “Estimating the predictive accuracy of a classifier,” in European

Conference on Machine Learning. Springer, 2001, pp. 25–36.

[56] I. Khan, X. Zhang, M. Rehman, and R. Ali, “A literature survey and empirical study of

meta-learning for classifier selection,” IEEE Access, vol. 8, pp. 10 262–10 281, 2020.

[57] P. Brazdil, J. N. van Rijn, C. Soares, and J. Vanschoren, “Dataset characteristics (Metafea-

tures),” in Metalearning. Springer, 2022, pp. 53–75.

[58] L. Todorovski, P. Brazdil, and C. Soares, “Report on the experiments with feature selection

in meta-level learning,” in Proceedings of the PKDD-00 Workshop on Data Mining, Decision

Support, Meta-learning and ILP: Forum for Practical Problem Presentation and Prospective

Solutions. Citeseer, 2000.

[59] A. Kalousis and M. Hilario, “Feature selection for meta-learning,” in Pacific-Asia Conference

154

on Knowledge Discovery and Data Mining. Springer, 2001, pp. 222–233.

[60] R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, “META-DES. Oracle: Meta-learning and

feature selection for dynamic ensemble selection,” Information Fusion, vol. 38, pp. 84–103,

2017.

[61] C. X. Ren, D. Q. Dai, and Y. Hong, “Robust classification using 2,1-norm based regression

model,” Pattern Recognition, vol. 45, no. 7, pp. 2708–2718, 2012.

[62] Y.-F. Yu, C.-X. Ren, M. Jiang, M.-Y. Sun, D.-Q. Dai, and G. Guo, “Sparse approximation to

discriminant projection learning and application to image classification,” Pattern Recognition,

vol. 96, p. 106963, 2019.

[63] C. Li, X. Wang, W. Dong, J. Yan, Q. Liu, and H. Zha, “Joint active learning with feature se-

lection via cur matrix decomposition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 41, no. 6, pp. 1382–1396, 2018.

[64] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,”

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 68, no. 1, pp.

49–67, 2006.

[65] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group Lasso,” Journal of

Computational and Graphical Statistics, vol. 22, no. 2, pp. 231–245, 2013.

[66] Y. Li, B. Nan, and J. Zhu, “Multivariate sparse group lasso for the multivariate multiple

linear regression with an arbitrary group structure,” Biometrics, vol. 71, no. 2, pp. 354–363,

2015.

[67] G. Obozinski, M. J. Wainwright, and M. I. Jordan, “Support union recovery in high-

dimensional multivariate regression,” The Annals of Statistics, vol. 39, no. 1, pp. 1–47, 2011.

[68] Ran-Chao, Ren, Chuan-Xian, Xiao-Lin, Yan, and Hong, “Sliced inverse regression with adap-

tive spectral sparsity for dimension reduction,” IEEE Transactions on Cybernetics, vol. 47,

no. 3, pp. 759–771, 2017.

[69] E. R. Mansfield and B. P. Helms, “Detecting multicollinearity,” The American Statistician,

vol. 36, no. 3a, pp. 158–160, 1982.

[70] D. Dua and C. Graff, “UCI machine learning repository [http://archive. ics. uci. edu/ml].

Irvine, CA: University of California, School of Information and Computer Science,” IEEE

155

Transactions on Pattern Analysis and Machine Intelligence, 2019.

[71] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support vector classification,”

Department of Computer Science and Information Engineering, National Taiwan University,

Taipei, Tech. Rep., 2003.

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[73] M. Kück, S. F. Crone, and M. Freitag, “Meta-learning with neural networks and landmarking

for forecasting model selection an empirical evaluation of different feature sets applied to

industry data,” in 2016 International Joint Conference on Neural Networks (IJCNN). IEEE,

2016, pp. 1499–1506.

[74] X. Li, Y. Wang, and R. Ruiz, “A survey on sparse learning models for feature selection,”

IEEE transactions on cybernetics, vol. 52, no. 3, pp. 1642–1660, 2020.

[75] V. Roth, “The generalized LASSO,” IEEE Transactions on Neural Networks, vol. 15, no. 1,

pp. 16–28, 2004.

[76] P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman, “Sparse additive models,” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), vol. 71, no. 5, pp. 1009–1030,

2009.

[77] M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama, “High-dimensional feature

selection by feature-wise kernelized Lasso,” Neural Computation, vol. 26, no. 1, pp. 185–207,

2014.

[78] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, “Feature selection

for SVMs,” Advances in Neural Information Processing Systems, vol. 13, 2000.

[79] Y. Grandvalet and S. Canu, “Adaptive scaling for feature selection in SVMs,” Advances in

Neural Information Processing Systems, vol. 15, 2002.

[80] F. Li, Y. Yang, and E. Xing, “From Lasso regression to feature vector machine,” Advances

in Neural Information Processing systems, vol. 18, 2005.

[81] H. Chen, X. Wang, C. Deng, and H. Huang, “Group sparse additive machine,” Advances in

Neural Information Processing Systems, vol. 30, 2017.

156

[82] R. Tibshirani, “The Lasso method for variable selection in the Cox model,” Statistics in

Medicine, vol. 16, no. 4, pp. 385–395, 1997.

[83] Y. Liang, C. Liu, X.-Z. Luan, K.-S. Leung, T.-M. Chan, Z.-B. Xu, and H. Zhang, “Sparse

logistic regression with a L1/2 penalty for gene selection in cancer classification,” BMC

Bioinformatics, vol. 14, no. 1, pp. 1–12, 2013.

[84] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models

via coordinate descent,” Journal of Statistical Software, vol. 33, no. 1, p. 1, 2010.

[85] D. Seung and L. Lee, “Algorithms for non-negative matrix factorization,” Advances in Neural

Information Processing Systems, vol. 13, pp. 556–562, 2001.

[86] D. A. Pisner and D. M. Schnyer, “Support vector machine,” in Machine Learning. Elsevier,

2020, pp. 101–121.

[87] X. Zhu, X. Yang, C. Ying, and G. Wang, “A new classification algorithm recommendation

method based on link prediction,” Knowledge-Based Systems, vol. 159, pp. 171–185, 2018.

[88] K. Järvelin and J. Kekäläinen, “IR evaluation methods for retrieving highly relevant docu-

ments,” in ACM SIGIR Forum, vol. 51 (2). ACM New York, NY, USA, 2017, pp. 243–250.

[89] R. F. Woolson, “Wilcoxon signed-rank test,” Wiley Encyclopedia of Clinical Trials, pp. 1–3,

2007.

[90] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace structures by

low-rank representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 1, pp. 171–184, 2012.

[91] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank tensor recovery via

convex optimization,” Inverse Problems, vol. 27, no. 2, p. 025010, 2011.

[92] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values

in visual data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 1, pp. 208–220, 2012.

[93] P. Zhou, C. Lu, Z. Lin, and C. Zhang, “Tensor factorization for low-rank tensor completion,”

IEEE Transactions on Image Processing, vol. 27, no. 3, pp. 1152–1163, 2017.

[94] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust principal component

analysis: Exact recovery of corrupted low-rank tensors via convex optimization,” in Pro-

157

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

5249–5257.

[95] O. A. Malik and S. Becker, “Low-rank tucker decomposition of large tensors using tensors-

ketch,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[96] J. H. d. M. Goulart, M. Boizard, R. Boyer, G. Favier, and P. Comon, “Tensor CP decom-

position with structured factor matrices: Algorithms and performance,” IEEE Journal of

Selected Topics in Signal Processing, vol. 10, no. 4, pp. 757–769, 2015.

[97] M. Signoretto, L. De Lathauwer, and J. A. Suykens, “Nuclear norms for tensors and their use

for convex multilinear estimation,” Submitted to Linear Algebra and Its Applications, vol. 43,

2010.

[98] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Trans-

formers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[99] J. Zhang, H. Peng, K. Wu, M. Liu, B. Xiao, J. Fu, and L. Yuan, “MiniViT: Compressing

vision transformers with weight multiplexing,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2022, pp. 12 145–12 154.

[100] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

770–778.

[101] Y. Ji, Q. Wang, X. Li, and J. Liu, “A survey on tensor techniques and applications in machine

learning,” IEEE Access, vol. 7, pp. 162 950–162 990, 2019.

[102] N. Srebro and A. Shraibman, “Rank, trace-norm and max-norm,” in International Conference

on Computational Learning Theory. Springer, 2005, pp. 545–560.

[103] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima, “Statistical performance of convex

tensor decomposition,” Advances in Neural Information Processing Systems, vol. 24, pp.

972–980, 2011.

[104] C. Mu, B. Huang, J. Wright, and D. Goldfarb, “Square deal: Lower bounds and improved

relaxations for tensor recovery,” in International Conference on Machine Learning. PMLR,

2014, pp. 73–81.

158

[105] A. Rivolli, L. P. Garcia, C. Soares, J. Vanschoren, and A. C. de Carvalho, “Character-

izing classification datasets: A study of meta-features for meta-learning,” arXiv preprint

arXiv:1808.10406, 2018.

[106] H. Peng, H. Du, H. Yu, Q. Li, J. Liao, and J. Fu, “Cream of the crop: Distilling prioritized

paths for one-shot neural architecture search,” Advances in Neural Information Processing

Systems, vol. 33, pp. 17 955–17 964, 2020.

[107] M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching transformers for visual

recognition,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,

2021, pp. 12 270–12 280.

[108] M. Chen, K. Wu, B. Ni, H. Peng, B. Liu, J. Fu, H. Chao, and H. Ling, “Searching the search

space of Vision Transformer,” Advances in Neural Information Processing Systems, vol. 34,

pp. 8714–8726, 2021.

[109] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,” Knowledge-Based

Systems, vol. 212, p. 106622, 2021.

[110] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for

general algorithm configuration,” in International Conference on Learning and Intelligent

Optimization. Springer, 2011, pp. 507–523.

[111] R. Leite, P. Brazdil, and J. Vanschoren, “Selecting classification algorithms with active test-

ing,” in International Workshop on Machine Learning and Data Mining in Pattern Recogni-

tion. Springer, 2012, pp. 117–131.

[112] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou, “Stacked

denoising autoencoders: Learning useful representations in a deep network with a local de-

noising criterion,” Journal of Machine Learning Research, vol. 11, no. 12, pp. 3371–3408,

2010.

[113] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, “Efficient learning of sparse representa-

tions with an energy-based model,” in Proceedings of the 19th International Conference on

Neural Information Processing Systems, 2006, pp. 1137–1144.

[114] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka: Combined selection

and hyperparameter optimization of classification algorithms,” in Proceedings of the 19th

159

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013,

pp. 847–855.

[115] S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren, “Speeding up algorithm

selection using average ranking and active testing by introducing runtime,”Machine Learning,

vol. 107, no. 1, pp. 79–108, 2018.

[116] P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning from

examples without local minima,” Neural Networks, vol. 2, no. 1, pp. 53–58, 1989.

[117] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise approach to learning to rank:

Theory and algorithm,” in Proceedings of the 25th International Conference on Machine

Learning, 2008, pp. 1192–1199.

[118] W. Chen, T.-Y. Liu, Y. Lan, Z.-M. Ma, and H. Li, “Ranking measures and loss functions in

learning to rank,” Advances in Neural Information Processing Systems, vol. 22, pp. 315–323,

2009.

[119] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster

analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987.

[120] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory and applications.

Springer Science & Business Media, 2005.

[121] D. R. Radev, H. Qi, H. Wu, and W. Fan, “Evaluating web-based question answering systems,”

in LREC, 2002, pp. 1153–1156.

160

APPENDIX A

UCI DATASETS

Table 6.1: Information Summarization of the UCI datasets adopted in the experiments with
respect to names, number of instances, attributes, and classes.

ID Name #Instances #Attributes #Classes
1 abalone 4177 8 3
2 acute-Inflammations 120 7 2
3 audit-risk 776 26 2
4 audit-trial 4177 8 3
5 authentication 1372 4 2
6 autism-adult 704 19 2
7 avila 120 7 2
8 bc wisconsin 776 26 2
9 bc wpbc 198 33 2
10 bc-coimbra 116 9 2
11 bc-diagnostic 569 30 2
12 biodegradation 776 26 2
13 blogger 776 17 2
14 blood-transfusion 1372 4 2
15 breast 776 17 2
16 breast-cancer 286 9 2
17 car 1372 4 2
18 cardiotocography 704 19 2
19 cargo 704 19 2
20 cb-sonar 10425 10 11
21 cb-vowel 116 9 2
22 cb-vowel-context 569 30 2
23 chessboard 699 9 2
24 chess-krvkp 3196 36 2
25 climate 10425 10 11
26 CNAE-9 198 33 2
27 contrac 1473 9 3
28 credit-approval 690 15 2
29 creditcard-clients 100 5 2
30 crowdsourced-mapping 10845 28 6
31 cryotherapy 90 6 2
32 dermatology 366 34 6
33 diabetic-retinopathy 748 4 2
34 divorce 569 30 2
35 drug-alcohol 1885 12 7
36 drug-amphetamines 286 9 2
37 drug-cocaine 1882 12 6
38 ecoli2 569 30 2
39 fertility 100 9 2
40 firm-teacher 3942 24 3
41 flags 194 28 6
42 flowmeter-diagnostics 3942 24 3
43 forest-types 523 27 4
44 gamma-telescope 19020 10 2
45 glass 205 9 5
46 grid-stability 10000 13 2
47 haberman-survival 699 9 2
48 happiness-survey2 208 60 2
49 hayes-roth 990 13 11
50 heart 270 13 2
51 hepatitis 528 10 11
Continued on next page

161

Table 6.1 – continued from previous page
ID Name #Instances #Attributes #Classes
52 hill-valley 100 2 2
53 hill-valley-noise 1080 856 9
54 horse colic 198 33 2
55 house votes 1473 9 3
56 HTRU 17898 8 2
57 ilpd 583 10 2
58 image-segmentation 2310 19 7
59 internet ad 30000 23 2
60 ionosphere 1055 41 2
61 iris 10845 28 6
62 knowledge-model 90 6 2
63 libras 1151 19 2
64 liver 345 6 2
65 lymphography2 170 54 2
66 madelon 1885 12 7
67 madelon valid 600 500 2
68 mammographic 961 5 2
69 mb-promoter 1885 12 7
70 mb-splice 1882 12 6
71 mice-protein 327 7 5
72 monks-1 10000 13 2
73 monks-2 100 9 2
74 monks-3 554 6 2
75 mushroom 8124 21 2
76 musk-clean 6598 166 2
77 musk-clean 1 476 166 2
78 nursery 748 4 2
79 occupancy-detection 8143 5 2
80 online-shoppers 12330 17 2
81 optdigits 523 27 4
82 page-blocks 1728 6 4
83 parkinsons 195 22 2
84 parkinson-speech 116 9 2
85 pendigits 1055 41 2
86 phishing-website 540 18 2
87 pima 768 8 2
88 planning-relax 194 28 6
89 post-operation 19020 10 2
90 protein 205 9 5
91 QSAR-androgen-receptor 306 3 2
92 QSAR-bioconcentration 140 6 3
93 qualitative-bankruptcy 132 5 3
94 scale 270 13 2
95 seeds 210 7 3
96 segment 1212 100 2
97 seismic-bumps 286 9 2
98 shuttle-test 14494 9 5
99 spambase 4601 57 2
100 spectf-heart 1728 6 4
101 spect-heart 300 27 2
102 spiral 100 3 2
103 sports-article 1000 59 2
104 st-australian 690 14 2
105 steelplates-faults 1941 27 7
106 st-german-credit 435 16 2
107 st-german-numeric 1000 24 2
108 st-landsat 6435 36 6
109 student-evaluation 5820 32 3
110 student-math 395 33 2
111 student-performance 2126 22 3
112 student-performance-por 3196 36 2
113 st-vehicle 100 5 2
Continued on next page

162

Table 6.1 – continued from previous page
ID Name #Instances #Attributes #Classes
114 synthetic-control 10800 16 4
115 TA-evaluations 151 5 3
116 thoracic-surgery 569 30 2
117 tic-tac-toe 1212 100 2
118 urban-land-cover 675 147 9
119 uspst 2007 256 10
120 vehicle 846 18 4
121 vertebral-column-2 17898 8 2
122 vertebral-column-3 583 10 2
123 voice 2126 22 3
124 vowel-context 366 34 6
125 wall-following 5456 24 4
126 waveform 5000 21 3
127 wearable-computing 2310 19 7
128 website-phishing 155 19 2
129 wholesale 3279 1558 2
130 wilt 690 15 2
131 wine 208 60 2
132 wine-quality-red 1599 11 6
133 wine-quality-white 4893 11 6
134 wireless-indoor 351 34 2
135 yeast 150 4 3
136 Z-Alizadeh-sani 303 54 2

163

APPENDIX B

KAGGLE IMAGE DATASETS

Table 6.2: Information Summarization of the image classification datasets adopted in the
experiments with respect to names, the number of (training, validation) instances, and the
number of classes.

ID Name #Train #Validation #Classes
1 AID 8020 990 30
2 Alien vs Predator 694 100 2
3 amazon 2259 279 31
4 Animal 12 13794 1692 12
5 Animal 151 5062 604 151
6 Animal 5 11996 1500 5
7 Animal 90 4320 540 90
8 Animal Faces 13130 1500 3
9 Apparel 9058 1124 24
10 AppleScabLDs 954 118 2
11 architecture 3905 422 25
12 Arts Images 6867 856 5
13 Birds vs Drone 606 110 2
14 BloodCell 7472 2485 4
15 Boat Recognition 1206 142 9
16 Brain Tumor MRI 5143 569 4
17 Breast Ultra Images 583 71 3
18 Butterfly 9285 375 75
19 Caltech101 7400 878 102
20 Car Brand Logos 2203 242 8
21 Cats Vs Dogs 19956 2494 2
22 Cats vs Rabbits 1600 414 2
23 Cats-Dogs-Bird 10677 1333 3
24 Chest CT scan 613 72 4
25 Chest X-RAY 5216 16 2
26 Chinese Mnist 12000 1500 15
27 Corn seeds 14243 1779 4
28 COVID19 Chest X-ray 14041 1754 3
29 COVID-19 Lung CT Scans 599 74 2
30 COVIDG 17039 2128 2
31 CUB 200 2011 9478 1171 200
32 Dermnet 14011 1546 23
33 Dogs 70 7946 700 70
34 dslr 420 39 31
35 Elephant Asia vs Africa 756 84 2
36 Emontion Detection 18067 2004 5
37 EndoTect 2020 583 69 11
38 EuroSAT 7305 913 4
39 Eye diseases 572 70 3
40 Facemask Detection 7188 897 3
41 Fake-Real face 1032 128 2
42 FGVC-aricrafts 8000 1000 30
43 Flower Recog 3457 430 5
44 Flowers 10288 1279 13
45 flowers 102 6149 1020 102
46 Food 11 9866 3430 11
47 Forest Fire 4154 455 2
48 Formula One Cars 1927 239 8
49 Fresh vs stale fruits 11748 1467 2
50 Fruits 360 6231 3114 24
Continued on next page

164

Table 6.2 – continued from previous page
ID Name #Train #validation #Classes
51 Fruits&Veg 3114 351 36
52 Fundus 827 83 40
53 Garbage 12 12423 1545 12
54 Garbage 5 2025 251 6
55 Gender Classification 21736 2715 2
56 Glaucoma 469 130 2
57 Google SIRI-WHU earth 1920 240 12
58 Grapevein leaf 400 50 5
59 Grocery Store 2640 296 43
60 Horses 542 64 7
61 Horses or Humans 925 256 2
62 imagenet-a 6244 661 200
63 Indian Food 3828 470 15
64 Intel image 9164 2488 5
65 IP02 45095 7508 102
66 kth tips col 200x200 650 80 10
67 Large-scale Fish Dataset 344 43 9
68 Lung and Colon Cancer 20000 2500 5
69 Lung Cancer 879 109 3
70 Malicious UAV Dataset 625 75 5
71 Marvel Heros 2329 451 8
72 MASATI-v2 5918 735 7
73 Metal Surface Defects 1656 72 6
74 MIT Indoor Scenes 12527 1531 67
75 Monkeys 10 991 272 10
76 Mushroom 5378 668 9
77 Natural Images 5527 686 8
78 Notre Dame dataset 837 397 5
79 OPTIMAL-31 1488 186 31
80 Oxford Pet 5908 738 37
81 pest 2430 270 9
82 Plant Disease Recognition 1322 60 3
83 Pneumothorax 1623 202 2
84 Pumpkin Disease 1147 137 18
85 Red Root Sugarcane 779 85 2
86 Room Clean vs Messy 174 20 2
87 RS C11 Database 994 119 11
88 RSI-CB256 19803 2472 7
89 SARS-COV 1986 247 2
90 Sign Languange 1662 200 10
91 Skin Cancer ISIC 2020 219 9
92 Snakes 1583 175 2
93 Sports 100 13572 500 100
94 Stanford Dog 16548 2009 120
95 Tire Texture 634 69 2
96 Tsinghua Dog 57161 6988 130
97 UCMerced LandUse 1680 210 21
98 Veg Images 15000 3000 15
99 Vehicle Detection 14210 1775 2
100 Waste Classification 20309 2255 2
101 Weather Dataset 902 110 4
102 Weather Image 5495 682 11
103 webcam 656 68 31
104 WHU-RS19 813 96 19
105 World Coins 6413 844 211

165

APPENDIX C

EVALUATION METRICS

Three commonly used metrics in meta-learning are chosen for evaluating the performance of the

recommendation approaches, namely, classification accuracy rate (CA), recommendation accuracy

rate (RA), and hit rate (HR). In addition, mean reciprocal rank (MRR) and normalized discounted

cumulative gain (NDCG), which are widely used in recommender systems, are also adopted in our

experiment. The definitions of the five metrics are given below.

Classification accuracy rate (CA): CA is widely used to evaluate the performance of

classification algorithm A instantiated a specific configuration ω on a dataset D . In this paper,

we adopt the balanced CA to handle the possible imbalance existing in datasets, so that CA will

not be biased by the class sizes. Average CA (ACA) over n datasets is defined as

ACA =
1

n

n∑
i=1

CADi
AωRecom

× 100%,

where CADi
AωRecom

denotes the CA on the dataset Di using recommended configuration ωRecom.

The range of both CA and ACA is [0,1], and a higher CA and ACA are preferred, which indicates

that the configuration recommended on each dataset appears to be more suitable.

Recommendation accuracy rate (RA): CA is not so effective when all configurations

have a similar CA. RA compares the recommended configurations with the truly best and worst

configurations as

RA =
CAD

AωRecom
− CAD

Aωworst

CAD
Aωbest

− CAD
Aωworst

, (6.1)

where CAD
Aωworst

and CAD
Aωbest

are the CA of the worst and the best candidate configurations,

166

respectively. The average RA (ARA) over n datasets is given by

ARA =
1

n

n∑
i=1

RADi
AωRecom

× 100%, (6.2)

where RADi
AωRecom

denotes the RA on the ith dataset. The ranges of RA and ARA are set to be

in [0,1]. A larger RA means the recommended configurations are much closer to the real best

configurations.

Hit rate (HR): For a given dataset D and classifier A , we say a configuration ω is applicable

if the CA of Aω falls into the interval

[
CAD

Aωbest
− α× σCA, CAD

Aωbest

]
, (6.3)

where σCA is the standard deviation of {CAD
Aω
|ω ∈ ΩA } and α is a positive integer that adjusts

the length of this interval (in this paper, we set α = 1). If the recommended configurations are

applicable, then we call this recommendation hit on dataset D . HR over n datasets is defined as

HR =
1

n

n∑
i=1

HRDi
AωRecom

× 100%,

where HRDi
AωRecom

= 1 if the recommendation on dataset Di is hit, otherwise, HRDi
AωRecom

= 0. The

range of HR is also [0,1] and a larger HR is preferred.

Mean-reciprocal rank (MRR): To evaluate the ranking of the best underlying hyperpa-

rameter in a performance prediction, we adopt MRR metric [121] which is defined as MRR =

1
n

∑n
i=1

1
rankDi

(ωbest)

MRR =
1

n

n∑
i=1

1

rankDi
(ωbest)

, (6.4)

where rankDi
(ωbest) refers to the rank of the real best hyperparameter ωbest on the predictive

167

performance of dataset Di. Since the optimal hyperparameter for datasets usually is not unique,

we modify it as

MRR =
1

n

n∑
i=1

1

min{rankDi
(ω

(1)
best), · · · , rankDi

(ω
(l)
best)}

,

where we assume that there are l equally optimal hyperparameters for dataset Di. The range of

MRR is given by (0, 1], and we expect that rankD(ωbest) = 1, so a larger MRR implies that the

model is more likely to recommend the real optimal hyperparameters.

Normalized discounted cumulative gain (NDCG): Take the predictive performance

vector xpred
i as the scores the recommender system assigned to the list of items for a testing

problem (query) Di, then the NDCG at a particular rank position ρ (0 < ρ ≤ m) on this problem

(query) can be defined as

NDCGρ
Di

=
DCGρ

Di

IDCGρ
Di

,

where DCGρ
Di

=
∑ρ

j=1
2
π[(x

pred
i

)
j
]
−1

log2(i+1) is the discounted cumulative gain obtained from xpred
Di

and

IDCGρ
Di

=
∑ρ

j=1
2
π[(xi)j]−1
log2(i+1) is the real discounted cumulative gain obtained from xDi

on problem

Di; π[(x
pred
i)j] (π[(xi)j]) indicates the rank of the jth entry of xpred

Di
(xDi

). The range of NDCGρ
Di

is (0, 1] and a larger value implies the first ρ recommended configurations being better matching

the real best top-ρ configurations. The NDCG over N testing problems is given by

NDCG@ρ =
1

N

N∑
i=1

NDCGρ
Di
.

Again, NDCG@ρ ∈ (0, 1] and a larger NDCG@ρ is preferred.

168

APPENDIX D

AUTOMATIC META-FEATURE SELECTION

Instability analysis of equation (2.7): First, we show that equation (2.16) is equivalent to

equation (2.7) when a = 1
∥hi⋆∥22

. Notice that ∇l(S,βt
i) = −Sh⊤

i⋆ + βt
i∥hi⋆∥22 +

∑rk
j ̸=i βj∥hj⋆∥22 and

β̃
t
i = βt

i − a∇l(S,βt
i), then

(2.16)⇐⇒ βi = β̃
t
i

(
1 +

aλ

∥βi∥2

)−1

=
[
βt
i − a∇l(S,βt

i)
](

1 +
aλ

∥βi∥2

)−1

=

[
βt
i −

1

∥hi⋆∥22
∇l(S,βt

i)

](
1 +

λ

∥hi⋆∥22∥βi∥2

)−1

=

Sh⊤
i⋆ −

rk∑
j ̸=i

βj∥hj⋆∥22

(∥hi⋆∥22 +
λ

∥βi∥2

)−1

⇐⇒ (2.7).

Therefore, we can rewrite equation (2.7) as equation (2.18) where a = 1
∥hi⋆∥22

, and obtain

βi = β̃
t
i

(
1− aλ

∥β̃t
i∥2

)
+

= [βt
i − a∇l(S,βt

i)]

(
1− aλ

∥βt
i − a∇l(S,βt

i)∥2

)
+

=
c

∥hi⋆∥22

(
1− λ

∥c∥2

)
+

,

where c = Sh⊤
i⋆ −

∑rk
j ̸=i βj∥hj⋆∥22 that is free of ∥hi⋆∥2. As one can see, when ∥hi⋆∥2 → 0,

c
∥hi⋆∥22

→∞. Thus, we have if (1− λ
∥c∥2)+ > 0 then βi →∞. Obviously, this situation will lead to

unstable and unsatisfying simulations.

Proof of Theorem 2.3.1: To prove

l(S,B) ≤ l(S,Bt) + tr((B−Bt)⊤∇l(S,Bt)) +
1

2a
∥B−Bt∥2F , (6.5)

169

we consider its subproblem, namely, fixing all columns of B except βj ,

l(S,βj) ≤ l(S,βt
j) + (βj − βt

j)
⊤∇l(S,βt

j) +
1

2a
∥βj − βt

j∥22. (6.6)

As a quadratic function, l(S,βj) can be expressed at point βt
j as

l(S,βj) = l(S,βt
j) + (βj − βt

j)
⊤∇l(S,βt

j) +
1

2
(βj − βt

j)
⊤[∇2l(S,βj)](βj − βt

j), (6.7)

where ∇2l(S,βj) = ∥hj⋆∥22I is the second-order derivative of l with respect to βj . Then, it is

equivalent to showing that

1

2
(βj − βt

j)
⊤(∥hj⋆∥22I)(βj − βt

j) ≤
1

2a
∥βj − βt

j∥22, (6.8)

which requires 0 < a ≤ 1
∥hj⋆∥22

. Now take the all columns of B into account, one can have

0 < a ≤ min{ 1

∥h1⋆∥22
,

1

∥h2⋆∥22
, · · · , 1

∥hrk⋆∥22
}.

Proof of Proposition 1: We prove Proposition 1 by contradiction. Suppose that β(1) and

β(2) are two different solutions for

βi = β̃
t
i

(
1 +

aλ

∥βi∥2

)−1

.

Without loss of generality, let ∥β(1)∥2 = 1. Then, we have

β(1) = β̃
t
i(1 + aλ)−1 (6.9)

β(2) = β̃
t
i

(
1 +

aλ

∥β(2)∥2

)−1

(6.10)

170

Notice that β̃
t
i = βt

i − a∇l(S,βt
i) is free of βi. Now we consider two different occasions:

1. ∥β(2)∥2 = 1. Then it is quite straightforward to see that β(1) = β(2). A contradiction.

2. ∥β(2)∥2 ̸= 1. From (6.9), one can have β̃
t
i = (1 + aλ)β(1), and plug it into (6.10),

β(2) = (1 + aλ)β(1)

(
1 +

aλ

∥β(2)∥2

)−1

= β(1) 1 + aλ

1 + aλ
∥β(2)∥2

. (6.11)

Taking 2-norm on both sides of (6.11), one arrives at

∥β(2)∥2 =
1 + aλ

1 + aλ
∥β(2)∥2

⇒ ∥β(2)∥2 + aλ = 1 + aλ⇒ ∥β(2)∥2 = 1,

which contradicts the assumption of ∥β(2)∥2 ̸= 1.

The proof of Proposition 1 is completed.

171

APPENDIX E

NONLINEAR META-FEATURE SELECTION

Proof of Theorem 2: To prove

G(bj ,b
t
j) = L(bt

j) + (bj − bt
j)

⊤∇L(bt
j) +

1

2aj
∥bj − bt

j∥22 + λ∥bj∥2, (6.12)

with L(bj) =
1
2∥H−BK∥2F is the auxiliary function of

F̂ (bj) =
1

2
∥H−BK∥2F + λ∥bj∥2 = L(bj) + λ∥bj∥2, (6.13)

we first need to show that F̂ (bj) ≤ G(bj ,b
t
j). It is easy to verify that the second-order gradient of

L with respect to bj is given by ∇L2(bt
j) = ∥kj⋆∥22 I. In fact, a direct calculation yields

∇L(bt
j) = (−HK⊤ +BtKK⊤)j = −Hk⊤

j⋆ + [bt
j(Kk⊤

j⋆)j +
n∑

i ̸=j

bt
i(Kk⊤

j⋆)i],

which leads to

∇L2(bt
j) = (Kk⊤

j⋆)j I = ∥kj⋆∥22 I.

We expand L(bj) in a Taylor series at the point bt
j as

L(bj) = L(bt
j) + (bj − bt

j)
⊤∇L(bt

j) +
1

2
(bj − bt

j)
⊤∇L2(bt

j)(bj − bt
j), (6.14)

Then it is equivalent to showing that

1

2
(bj − bt

j)
⊤(∥kj⋆∥22 I)(bj − bt

j) ≤
1

2aj
∥bj − bt

j∥22,

172

when the following condition

0 < aj ≤
1

∥kj⋆∥22
,

is met. The proof of F̂ (bt
j) = G(bt

j ,b
t
j) is straightforward.

Proof of Theorem 3: By Theorem 1, we have showed that G(bj ,b
t
j) is the auxiliary function

of F̂ (bj). For given bt+1
j = argminbj

G(bj ,b
t
j), we have

F̂ (bt+1) ≤ G(bt+1
j ,bt

j) ≤ G(bt
j ,b

t
j) = F̂ (bt),

which implies that F̂ (b) is nonincreasing under the updating rule

bj = b̃t
j

(
1− ajλ

∥b̃t
j∥2

)
+

.

Now we can generalize the proof to all columns of Wj , which leads to the conclusion.

173

APPENDIX F

LATENT FEATURE LEARNING

Table 6.3: The deployed hyperparameter settings for the candidate classifiers with respect to types, values, and steps.
Classifiers Hyperparameters Types Values Steps

AdaBoost
learning rate numerical 0.1:0.1:1 10
n estimators numerical {10,50,100,200,300,400,500} 7

Bagging
bootstrap binary {‘True’, ‘False’} 2
bootstrap fea binary {‘True’, ‘False’} 2
max samples numerical 0.1:0.1:0.9 9
n estimators integer 100:100:1000 10

Decision tree
split categorical {‘gini’, ‘entropy’} 2
min samples leaf integer 1:1:20 20
min samples split integer 2:1:20 19

Extra tree
split categorical {‘gini’, ‘entropy’} 2
min samples leaf integer 1:1:20 20
min samples split integer 2:1:20 19

KNN
weight categorical {‘uniform’, ‘distance’} 2
metric categorical {‘euclidean’,‘manhattan’,‘chebyshev’} 3
n neighbors integer 1:1:30 30

LDA
tolerance numerical {1e-5,1e-4,1e-3,1e-2,1e-1} 5
shrinkage rate numerical 0:0.1:1 11

LR
solver categorical {‘liblinear’, ‘saga’} 2
C numerical 0.01:0.01:1,1:1:100 199
penalty categorical {‘l1’, ‘l2’} 2

MultiP
solver categorical {‘sgd’, ‘adm’} 2
activation categorical {‘identity’,‘logistic’,‘tanh’,‘relu’} 4
alpha numerical {1e-4,1e-3,1e-2} 3
learning rate numerical {1e-4,1e-3,1e-2} 3

QDA reg param numerical 0:0.1:1 11

RF
split categorical {‘gini’,‘entropy’} 2
bootstrap binary {‘True’,‘False’} 2
min samples leaf integer 1:1:20 20
min samples split integer 2:1:20 19

SVM
C numerical 2-5:1:15 21
gamma numerical 2-15:1:3 19

174

VITA

Graduate School

Southern Illinois University Carbondale

Liping Deng

liping.deng@siu.edu

Shenzhen University, Shenzhen, Guangdong Province, China

Master of Science, Mathematics, June 2019

Anshan Normal University, Anshan, Liaoning Province, China

Bachelor of Science, Mathematics, June 2016

Special Honors and Awards:

Nomination for Excellent Teaching Assistant Award, 2022

Dissertation Title:

A Research on Automatic Hyperparameter Recommendation via Meta-learning

Major Professor: Dr. MingQing, Xiao

Publications:

Deng L., Xiao M.Q., “A New Automatic Hyperparameter Recommendation Approach under

Low-Rank Tensor Completion Framework”, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (2022), vol. 45, no. 4, pp. 4038-4050.

Deng L., Xiao, M.Q., “Latent Feature Learning via Autoencoder Training for Automatic Clas-

sification Configuration Recommendation”, Knowledge-Based Systems (2023), vol. 261, pp.

110218

Deng L., Chen W.-S., Xiao, M.Q., “Meta-feature Selection via A Novel Multivariate Sparse-

Group Lasso Method for Automatic Hyperparameter Configuration Recommendation”, in IEEE

Transactions on Neural Networks and Learning System, 2023. (In Press)

175

	A Research on Automatic Hyperparameter Recommendation via Meta-Learning
	Recommended Citation

	tmp.1689266882.pdf.FxoOe

