40,520 research outputs found

    Realization of 2-dimensional air-bridge silicon photonic crystals by focused ion beam milling and nanopolishing

    Get PDF
    We report the design and fabrication of small photonic crystal structures which are combined with conventional dielectric ridge waveguides. We describe in details the fabrication of both rough and smooth membranes, which are used as host for photonic crystals. Two Focused Ion Beam milling experiments are highlighted: the first one shows how photonic crystals can be fast and accurate milled into a Si membrane, whereas the second experiment demonstrates how focused ion beam milling can turn a rough surface into a well-patterned nano-smooth surface. The previously ultra rough surface showed no detectable roughness after milling due to the nanopolishing effect of the focused ion beam milling

    Characterization of Focused Ion Beam Milled Lines

    Get PDF
    As the nanotechnology is becoming an important aspect of science research and development, the application of the focused ion beam (FIB) technique is getting more attention. The focused ion beam is a tool for milling tiny objects. This research explored the characterization of FIB by relating milled line widths with their milling time. The scanning electron microscope (SEM) is used to image the milled lines and ImageJ to analyze the images. We found that the through-lens-detector (TLD) provides the best SEM image by reducing the shadowing effect which interfered with the data analysis. A logarithmic relation between the milled line width and milling time was determined. These presented results can help scientists design a FIB milling experiment in the future

    An argon ion beam milling process for native AlOx\text{AlO}_\text{x} layers enabling coherent superconducting contacts

    Get PDF
    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ⋅μm2\,\mathrm{m}\Omega \cdot \mu \mathrm{m}^2 at a frequency of 4.5 GHz. Resonators for which only 6%6\% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic field, showed quality factors above 10610^6 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.Comment: 4 pages, 4 figures, supplementary materia

    Nanostructuring lithium niobate substrates by focused ion beam milling

    Full text link
    We report on two novel ways for patterning Lithium Niobate (LN) at submicronic scale by means of focused ion beam (FIB) bombardment. The first method consists of direct FIB milling on LiNbO3 and the second one is a combination of FIB milling on a deposited metallic layer and subsequent RIE (Reactive Ion Etching) etching. FIB images show in both cases homogeneous structures with well reproduced periodicity. These methods open the way to the fabrication of photonic crystals on LiNbO3 substrates

    Ion-beam-assisted fabrication and manipulation of metallic nanowires

    Get PDF
    Metallic nanowires (NWs) are the key performers for future micro/nanodevices. The controlled manoeuvring and integration of such nanoscale entities are essential requirements. Presented is a discussion of a fabrication approach that combines chemical etching and ion beam milling to fabricate metallic NWs. The shape modification of the metallic NWs using ion beam irradiation (bending towards the ion beam side) is investigated. The bending effect of the NWs is observed to be instantaneous and permanent. The ion beam-assisted shape manoeuvre of the metallic structures is studied in the light of ion-induced vacancy formation and reconfiguration of the damaged layers. The manipulation method can be used for fabricating structures of desired shapes and aligning structures at a large scale. The controlled bending method of the metallic NWs also provides an understanding of the strain formation process in nanoscale metals

    Engineered plasmon focusing on functional gratings

    Get PDF
    We report on the engineering of plasmon propagation and focusing by dedicated curved gratings and noncollinear phasematching. Gratings were created on gold by focused ion beam milling and plasmons were measured using phase sensitive PSTM

    Phase gratings for plasmon focusing

    Get PDF
    We report gratings structures realized for the creation of focused plasmons through noncollinear phasematching. The gratings are created on gold by focused ion beam milling and the plasmons were measured using phase sensitive photon scanning tunneling microscope (PSTM)

    Josephson effects in MgB2 meta masked ion damage junctions

    Get PDF
    Ion beam damage combined with nanoscale focused ion beam direct milling was used to create manufacturable SNS type Josephson junctions in 100 nm thick MgB2_{2} with TC_{C} of 38 K. The junctions show non-hysteretic current - voltage characteristics between 36 and 4.2 K. Experimental evidence for the dc and ac Josephson effects in MgB2_{2} metal masked ion damage junctions are presented. This technique is particularly useful for prototyping devices due to its simplicity and flexibility of fabrication and has a great potential for high-density integration.Comment: 12 pages, 4 figures, RevTeX4, submitted to AP

    Focused ion beam milling of diamond waveguides

    Get PDF
    • …
    corecore