181 research outputs found

    Performance comparison between Surface Mounted and Interior PM motor drives for Electric Vehicle application

    Get PDF
    Electric Vehicles make use of permanent magnet synchronous traction motors for their high torque density and efficiency. A comparison between interior permanent magnet (IPM) and surface mounted permanent magnet (SPM) motors is carried out, in terms of performance at given inverter ratings. The results of the analysis, based on a simplified analytical model and confirmed by FE analysis, show that the two motors have similar rated power but that the SPM motor has barely no overload capability, independently of the available inverter current. Moreover the loss behavior of the two motors is rather different in the various operating ranges with the SPM one better at low speed due to short end connections but penalized at high speed by the need of a significant de-excitation current. The analysis is validated through finite-element simulation of two actual motor design

    Performance estimation of interior permanent-magnet brushless motors using the voltage-driven flux-MMF diagram

    Get PDF
    The flux-magnetomotive force (flux-MMF) diagram, or "energy conversion loop," is a powerful tool for computing the parameters of saturated interior permanent-magnet brushless motors, especially when the assumptions underlying classical dq theory are not valid, as is often the case in modern practice. Efficient finite-element computation of the flux-MMF diagram is possible when the motor current is known a priori, but in high-speed operation the current regulator can lose control of the current waveform and the computation becomes "voltage-driven" rather than "current-driven." This paper describes an efficient method for estimating the motor performance-average torque, inductances-by solving the voltage-driven problem. It presents experimental validation for a two-pole brushless interior permanent-magnet motor. The paper also discusses the general conditions under which this method is appropriate, and compares the method with alternative approaches

    Comparison of Induction and PM Synchronous motor drives for EV application including design examples

    Get PDF
    Three different motor drives for electric traction are compared, in terms of output power and efficiency at the same stack dimensions and inverter size. Induction motor (IM), surface-mounted permanent-magnet (PM) (SPM), and interior PM (IPM) synchronous motor drives are investigated, with reference to a common vehicle specification. The IM is penalized by the cage loss, but it is less expensive and inherently safe in case of inverter unwilled turnoff due to natural de-excitation. The SPM motor has a simple construction and shorter end connections, but it is penalized by eddy-current loss at high speed, has a very limited transient overload power, and has a high uncontrolled generator voltage. The IPM motor shows the better performance compromise, but it might be more complicated to be manufactured. Analytical relationships are first introduced and then validated on three example designs and finite element calculated, accounting for core saturation, harmonic losses, the effects of skewing, and operating temperature. The merits and limitations of the three solutions are quantified comprehensively and summarized by the calculation of the energy consumption over the standard New European Driving Cycl

    Optimal design and implementation of a drivetrain for an ultra-light electric vehicle

    Get PDF
    This paper presents an integrated design of a drivetrain for a single-person ultra-light electric vehicle (ULEV). To calculate losses and efficiency of the inverter, the permanent magnet synchronous machines (PMSMs) and the gearbox, parameterised analytical models are used. For the gearbox - which has a single gear ratio - the studied parameters are the gear ratio, the number of stages, the number of teeth and the module of each spur gear combination. The novelty of the paper is that it learns how the total average efficiency and the total mass of the drivetrain depend on the gear ratio, on the number of stages in the gearbox, on the motor parameters and on the chosen several driving cycles including the new European driving cycle (NEDC). On the basis of the presented results, it is possible to choose the right configuration of power electronics, PMSM and gearbox in order to have a good trade-off between high efficiency and low mass

    Improved rotor position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation

    Get PDF
    The paper presents an improved signal injection- based sensorless control method for permanent magnet brushless AC (BLAC) motors, accounting for the influence of cross-coupling magnetic saturation between the d- and q-axes. The d- and q-axis incremental self-inductances, the incremental mutual-inductance between the (d-axis and q-axis, and the cross-coupling factor are determined by finite element analysis. A method is also proposed for measuring the cross-coupling factor which can be used directly in the sensorless control scheme. Both measurements and predictions show that a significant improvement in the accuracy of the rotor position estimation can be achieved under both dynamic and steady-state operation, compared with that which is obtained with the conventional signal injection method

    Multiphase PMSM and PMaSynRM flux map model with space harmonics and multiple plane cross harmonic saturation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Multiphase Synchronous Machines vary in rotor construction and winding distribution leading to non-sinusoidal inductances along the rotor periphery. Moreover, saturation and cross-saturation effects make the precise modeling a complex task. This paper proposes a general model of multi-phase magnet-excited synchronous machines considering multi-dimensional space modeling and revealing cross-harmonic saturation. The models can predict multiphase motor behavior in any transient state, including startup. They are based on flux maps obtained from static 2D Finite-Element (FE) analysis. FE validations have been performed to confirm authenticity of the dynamic models of multiphase PMaSynRMs. Very close to FE precision is guaranteed while computation time is incomparably lower.Postprint (author's final draft

    Signal injection and averaging for position estimation of Permanent-Magnet Synchronous Motors

    Full text link
    Sensorless control of Permanent-Magnet Synchronous Motors at low velocity remains a challenging task. A now well-established method consists in injecting a high-frequency signal and use the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also experimentally demonstrates the relevance for position estimation of a simple parametric saturation model recently introduced by the authors

    Large-Scale Design Optimization of PM Machines Over a Target Operating Cycle

    Get PDF
    A large-scale finite element model-based design optimization algorithm is developed for improving the drive-cycle efficiency of permanent magnet (PM) synchronous machines with wide operating ranges such as those used in traction propulsion motors. The load operating cycle is efficiently modeled by using a systematic k-means clustering method to identify the operating points representing the high-energy-throughput zones in the torque-speed plane. The machine performance is evaluated over these cyclic representative points using a recently introduced computationally efficient finite element analysis, which is upgraded to include both constant torque and field-weakening operations in the evaluation of the machine performance metrics. In contrast with the common practice, which aims at enhancing the rated performance, the entire range of operation is considered in the present design optimization method. Practical operational constraints imposed by the voltage and current limits of the motor-drive system, excessive PM demagnetization, and torque ripple are accounted for during the optimization process. The convergence to the optimal design solutions is expedited by utilizing a new stochastic optimizer. The developed design algorithm is applicable to any configuration of sinewave-drive PM and synchronous reluctance motors over any conceivable load profile. Its effectiveness is demonstrated by optimizing the well-established benchmark design represented by the Toyota Prius Gen. 2 interior PM motor configuration over a compound operating cycle consisting of common U.S. driving schedules. Multiphysics electromagnetic, thermal, and mechanical performance of the optimized design solutions is discussed in a postdesign optimization stage

    Improved rotor-position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation

    Get PDF
    This paper presents an improved signal-injection- based sensorless-control method for permanent-magnet brushless ac (BLAC) motors, accounting for the influence of cross-coupling magnetic saturation between the d- and q-axes. The d- and q-axis incremental self-inductances, the incremental mutual inductance between the d-axis and q-axis, and the cross-coupling factor are determined by finite-element analysis. An experimental method is proposed for measuring the cross-coupling factor which can be used directly in the sensorless-control scheme. Both measurements and predictions show that a significant improvement in the accu- racy of the rotor-position estimation can be achieved under both dynamic and steady-state operation compared with that which is obtained with the conventional signal-injection method

    Saliency Ratio and Power Factor of IPM Motors Optimally Designed for High Efficiency and Low Cost Objectives

    Get PDF
    This paper uses formal mathematical optimization techniques based on parametric finite-element-based computationally efficient models and differential evolution algorithms. For constant-power applications, in the novel approach described, three concurrent objective functions are minimized: material cost, losses, in order to ensure high efficiency, and the difference between the rated and the characteristic current, aiming to achieve very high constant-power flux-weakening range. Only the first two objectives are considered for constant-torque applications. Two types of interior permanent magnet rotors in a single- and double-layer V-shaped configuration are considered, respectively. The stator has the typical two slots per pole and phase distributed winding configuration. The results for the constant-torque design show that, in line with expectations, high efficiency and high power factor machines are more costly, and that the low-cost machines have poorer efficiency and power factor and most importantly, and despite a common misconception, the saliency ratio may also be lower in this case. For constant-power designs, the saliency ratio can be beneficial. Nevertheless, despite a common misconception, when cost is considered alongside performance as an objective, a higher saliency ratio does not necessarily improve the power factors of motors suitable for ideal infinite flux weakening
    corecore