409 research outputs found

    Modal Interface Automata

    Full text link
    De Alfaro and Henzinger's Interface Automata (IA) and Nyman et al.'s recent combination IOMTS of IA and Larsen's Modal Transition Systems (MTS) are established frameworks for specifying interfaces of system components. However, neither IA nor IOMTS consider conjunction that is needed in practice when a component shall satisfy multiple interfaces, while Larsen's MTS-conjunction is not closed and Bene\v{s} et al.'s conjunction on disjunctive MTS does not treat internal transitions. In addition, IOMTS-parallel composition exhibits a compositionality defect. This article defines conjunction (and also disjunction) on IA and disjunctive MTS and proves the operators to be 'correct', i.e., the greatest lower bounds (least upper bounds) wrt. IA- and resp. MTS-refinement. As its main contribution, a novel interface theory called Modal Interface Automata (MIA) is introduced: MIA is a rich subset of IOMTS featuring explicit output-must-transitions while input-transitions are always allowed implicitly, is equipped with compositional parallel, conjunction and disjunction operators, and allows a simpler embedding of IA than Nyman's. Thus, it fixes the shortcomings of related work, without restricting designers to deterministic interfaces as Raclet et al.'s modal interface theory does.Comment: 28 page

    Role-Based Interface Automata

    Get PDF
    No abstract available

    An Introduction to Pervasive Interface Automata

    Get PDF
    Pervasive systems are often context-dependent, component based systems in which components expose interfaces and offer one or more services. These systems may evolve in unpredictable ways, often through component replacement. We present pervasive interface automata as a formalism for modelling components and their composition. Pervasive interface automata are based on the interface automata of Henzinger et al, with several significant differences. We expand their notion of input and output actions to combinations of input, output actions, and callable methods and method calls. Whereas interfaces automata have a refinement relation, we argue the crucial relation in pervasive systems is component replacement, which must include consideration of the services offered by a component and assumptions about the environment. We illustrate pervasive interface autmotata and component replacement with a small case study of a pervasive application for sports predictions

    Assembly of components based on interface automata and {UML} component model

    No full text
    International audienceWe propose an approach which combines component UML model and interface automata in order to assemble components and to verify their interoperability. We specify component based system architecture with component UML model, and component interfaces with interface automata. Interface automata is a common Input Output (I/O) automata-based formalism intended to specify the signature and the protocol level of component interfaces. We improve interface automata approach by component UML model, in order to consider system architecture, in component composition and interoperability verification methods. Therefore, we handle in interface automata, the connection between components, and the hierarchical connections between composite components and their subcomponents

    Adaptation is a Game

    Get PDF
    Control data variants of game models such as Interface Automata are suitable for the design and analysis of self-adaptive systems

    Interface Simulation Distances

    Full text link
    The classical (boolean) notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them) in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Interface Automata with Complex Actions

    Get PDF
    AbstractMany formalisms use interleaving to model concurrency. To describe some system behaviours appropriately, we need to limit interleaving. For example, in component-based systems, we wish to limit interleaving to force the inputs to a method to arrive together in order. We introduce interface automata with complex actions (IACA), which add complex actions to de Alfaro and Henzinger's interface automata (IA). A complex action is a sequence of actions that may not be interleaved with actions from other components. The composition and refinement operations are more involved in IACA compared to IA, and we must sacrifice associativity of composition. However, we argue that the advantages of having complex actions make it a useful formalism
    corecore