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Component-based software system development is based on highly specialised components, each
developed to meet different objectives, which are then composed into a system with an overall objec-
tive. We propose Role-based interface automata (RI automata) [2], a new formalism for modelling and
reasoning about component-based systems. We focus on the actions exposed by interfaces, and their
temporal ordering because, in general, we may not have access to individual component behaviour. This
formalism extends Interface Automata [[1] by defining role-based actions and component objectives in a
temporal action logic.

A key feature of RI automata is the different types of transitions and the roles they represent. As with
original interface automata, we distinguish between input for receiving, output for sending, and hidden
(or internal) actions. Unlike interface automata, which conflates input with methods that can be called,
and output with method calls, we further differentiate input and output actions according to three roles.
These reflect fulfilment of component requirements and environment requirements, and are classified
as: master, which calls (or requires), servant, which is callable (or supports, offers) and valet, which
behaves like a servant or a silent (or anonymous hidden) action. Essentially a valet action is a choice that
is determined by the environment. The valet does whatever is required by a master, if it can.

Action names are shared between component interfaces and the role each action has in a component
depends upon that component. For example, when modelling a GPS-based navigation system, the transi-
tion label i.M?loc represents the action “component i requires the loc method (get location) and receives
data (for example, GPS coordinates)”. Another example is the transition label j.S!loc, which represents
the action “component j offers the loc method, delivering data (e.g. GPS coordinates) to the requesting
component.” The former action has a master role (M), whereas the the latter has a servant role (S). When
components are composed, denoted here by ||, they synchronise on shared actions so that input/output
and role requirements are met. Informally, this means that in any composition, master actions must be
synchronised with another servant or valet action (collectively known as subservient actions) in order to
fulfil a component’s objectives, whereas valet and servant actions are not subject to the same constraint.
Non-synchronised subservient actions represent spare capacity. Role-based interface automata interact
through four types of synchronisation: MI/VO, MI/SO, MO/VI, MO/SI, where M stands for master,
V for valet, S for servant, | for input and O for output. For example the action i.M?loc can synchronise
with j.S!loc, as an MI/SO synchronisation. Internal actions of the component automata are interleaved
asynchronously, as usual for interface automata.

When composing two RI automata we use an optimistic or busy form of synchronisation. This means
that if one automaton needs to perform a shared action but the other is not ready to reciprocate, we allow
the first to wait until an appropriate action is offered; the latter automaton can only perform hidden
actions in the meantime. If the second automaton can only follow paths in which the synchronising
action is never offered, then the two automata are not compatible and the composition is not possible. RI
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2 Role-based Interface Automata

automata are composed in two stages. Two RI automata are said to be composable if their actions are
suitably disjoint, for example, output actions are disjoint, input actions are disjoint, etc.

We aim for a lightweight framework in which to express component objectives and check whether
component replacements preserve the initial objectives: one that can be implemented on a small device
(e.g. a mobile phone) and used in real-time, when required, for example, before a potential replacement
component is downloaded. For instance, a phone application may evolve over time, replacing some
components by cheaper ones, others by ones with more functionality, and yet others by simpler ones
that work faster or have a more attractive user interface. We express component objectives as temporal
properties, called services, in a fragment of ALTL [11} [8], which we call Service-based Action Linear
Temporal Logic (SALTL), and we define an appropriate satisfaction relation.

Consider a software system composed of a component (or module) C and a context K (as composi-
tion of components) and let C’ be a new component we want to replace C within context K. In the case
of interface automata [1] it crucial that the new component (implementation) C’ refines the behaviour of
the old component (specification) C, i.e., C’ has at least the same inputs (method definitions) and at most
the same outputs (method calls) as C. For RI automata, the refinement relation between implementation
and specification translates informally to: implementation must allow fewer master actions and more
subservient actions than the specification. However, we propose that in component-based system devel-
opment another approach, the replacement (or substitution) of one component by another, to be taken
such that (i) the new component satisfies the same services as the old one and (ii) the new system still
achieves its objectives. We consider replacement to be more liberal than refinement, i.e., it should not
depend on the refinement relation between the old and the new component, but upon the old component
and component and system objectives that are considered to be relevant. Let Q be the RI automaton mod-
elling the interface of the context K above (which may be one or a composition of several RI automata),
and P and P’ the RI automata modelling the interfaces of the old component C and the new component
C’ respectively. We say that the RI automaton P’ can replace the RI automaton P in the context Q with
respect to some component objectives expressed as a service X. and some system objectives expressed
as a service Xy when:

(p1) P’ must satisfy all services X provided by P: if P |= X, then P’ = X;

(p2) P'||Q must be a valid composition and provide all the services provided by P||Q: P' and Q are
compatible and if P||Q = X, then P'||Q = Z;.

For the problem (p;) we just have to solve the SALTL satisfaction problem P’ = X.. The problem
(p2) reduces to checking P’'||Q = X, which may be a difficult problem to solve and it is not always
appropriate to check it in real-time, in case P’||Q is a prohibitively large automaton. Therefore we adopt
the approach of assume-guarantee reasoning frameworks [9, 12], and consider an abstraction of contexts
as assumptions about the actions offered to or required from the component P. Then, we need only check
that P’ satisfies X; under such assumptions. We note that an assume-guarantee reasoning framework has
been defined for Interface Automata [7]] based on the refinement relation between the old and the new
component.

RI automata resemble modal I/O automata [10, 3]] and modal specifications [[13]] due to the fact that
they capture the deontics of actions. However, they are subtly different: RI automata emphasise the
unique role that a component’s action has in a composition. On the other hand, modal I/O automata and
modal specifications label actions by modalities to indicate whether they should necessarily be included
in an implementation, and play an important role in interface refinement. Our chief objective is that of
replacement, rather than refinement, so this distinction is key.
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Another formalism addressing the problems associated with component-based systems is Component-
Interaction Automata [S]], designed to allow for the specification of various aspects of hierarchical
component-based systems and, specifically, to be used in combination with architecture description lan-
guages. Unlike our work, roles are not defined, so making the formalism less expressive.

An early version of RI automata, called PI automata (Pervasive Interface automata) is presented
in [6]. A major difference between RI automata and PI automata is the latter only includes two types of
action (master and slave), as well as employing a different notation. We made these developments as a
consequence of our experiences of applying PI automata to a pervasive software system case study (the
DOMINO framework [4] — a multiple-user mobile phone-based application). In [2], the definitions of RI
automata composition (and composability and compatibility), and the service logic have been made more
rigorous, and we have included examples illustrating the action roles and some compositions. Future
work involves implementing a model checker for the satisfaction relation and a full assume-guarantee
framework.
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