
Interface Automata with Complex Actions

Shahram Esmaeilsabzali 1 Farhad Mavaddat 2

Nancy A. Day 3

School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

Abstract

Many formalisms use interleaving to model concurrency. To describe some system behaviours
appropriately, we need to limit interleaving. For example, in component-based systems, we wish to
limit interleaving to force the inputs to a method to arrive together in order. We introduce interface
automata with complex actions (IACA), which add complex actions to de Alfaro and Henzinger’s
interface automata (IA). A complex action is a sequence of actions that may not be interleaved
with actions from other components. The composition and refinement operations are more involved
in IACA compared to IA, and we must sacrifice associativity of composition. However, we argue
that the advantages of having complex actions make it a useful formalism.

Keywords: Component-based design, Service-oriented design, interleaving, complex actions.

1 Introduction

Interleaving is a common choice to model the concurrent behaviour between
components of a system. Interleaving means that at each point in time only
one component takes a step. The result is all possible interleavings of the ac-
tions of the components. Many formalisms, both algebraic and non-algebraic,
have adopted interleaving semantics, e.g., [13,12,11,10]. However, interleaving
is not always appropriate to characterize system behaviour accurately because

1 Email: sesmaeil@cs.uwaterloo.ca
2 Email: fmavaddat@cs.uwaterloo.ca
3 Email: nday@cs.uwaterloo.ca

Electronic Notes in Theoretical Computer Science 159 (2006) 79–97

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.063
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81964855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sesmaeil@cs.uwaterloo.ca
mailto:fmavaddat@cs.uwaterloo.ca
mailto:nday@cs.uwaterloo.ca
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

it is based on the assumption that the concurrent behaviours of a system con-
sist of all possible orderings of actions in a system. Some software artifacts
have multiple constituent elements but represent a single software artifact,
thus, we may wish to group multiple actions such that their behaviour cannot
be interleaved with the behaviour of another component.

In this work, we introduce interface automata with complex actions (IACA),
designed to model component-based/service-oriented systems. IACA uses in-
terleaving with complex actions as its semantics for concurrency. A complex
action consists of multiple simple actions that cannot be interleaved with the
behaviour of another component. In component-based systems, at its signa-
ture level a method of a component can be characterized by the method’s
name and a set of parameters. Some formalisms choose to model methods by
abstracting away their details using, for example, only its name, e.g., [4]. To
model the details of the parameter communication, the arrival of the inputs
should not be interleaved with the behaviour of another component. Thus, we
require complex actions to model the semantics of the concurrent behaviour
of component-based systems at this level of detail. In Web services, communi-
cation with service requesters and other Web services occurs through complex
XML messages, which are streams of data delimited appropriately into mul-
tiple simple messages. We would like to model composite XML messages of
Web services as non-interruptible software artifacts.

Various approaches have been proposed for grouping multiple actions to-
gether (“atomic actions”) 4 [3,9] or refining a single action into multiple ac-
tions (“action refinement”) [1,14]. Most of these approaches are proposed in
a process algebraic context. We are interested in defining an automata-based
model with complex actions, which complies as closely as possible with the
class of interface models, introduced by de Alfaro and Henzinger [4]. These
models assume a helpful environment, which supplies needed inputs and re-
ceives all outputs. They also have well-formedness criteria that support top-
down design, which means that a refinement of a component can be substituted
for the original in the context of its composition with other components. Com-
position must be commutative and associative. Interface automata (IA) are an
interface model used to model the behaviour of component-based systems [4].
Composition for IA uses interleaving semantics.

Our model, interface automata with complex actions (IACA), extends IA
with the complex actions needed to model methods of component-based sys-
tems and messages of Web services. The main challenge for IACA is how
to define a composition operator and a refinement relation that do not al-

4 To avoid ambiguity, for actions that consist of multiple simple actions, we choose the
name “complex actions” instead of “atomic actions”.

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9780

low interleaving of complex actions, but support top-down design as much
as possible. Compared to other formalisms with complex actions, in IACA
we must respect the helpful environment, which means that in composition
a state should not be reached where one component would wait for commu-
nication from the other. Additionally, IACA composition requires that two
IACAs with compatible complex actions synchronize with each other. Our
definition of composition leads to a natural definition for IACA refinement
that is comparable with programming language concepts such as subclasses,
and optional parameters. IACA satisfies all of the well-formedness criteria of
interface models except the associativity of the composition operator. Other
approaches that have used types of interleaving with complex actions have
also suffered from the loss of associativity, e.g., A2CCS [9]. Despite the non-
associativity of composition, IACA is useful for modelling software artifacts
with complex actions.

We begin by providing background on interface automata. Next, we de-
scribe IACA and its composition operator and refinement relation. In Sec-
tion 4, we compare IACA with similar models that support complex actions,
and summarize and discuss future work in Section 5.

2 Background: Interface Automata

An interface automaton (IA) [4,6], introduced by de Alfaro and Henzinger, is
an automata-based model suitable for specifying component-based systems.
IA is part of a class of models called interface models [5], which are intended
to specify concisely how systems can be used and to adhere to certain well-
formedness criteria that make them appropriate for modelling component-
based systems. The two main characteristics of interface models are that they
assume a helpful environment and support top-down design. A helpful envi-
ronment for an interface provides the inputs it needs and always accepts all
its outputs. Therefore, interfaces are optimistic, and do not usually specify
all possible behaviours of the systems. For example, they often do not include
fault scenarios. Top-down design is based on a notion of refinement, which re-
lates two instances of a model. A refinement of a model can be substituted for
the original. In a well-formed interface model, the binary operator composi-
tion and a refinement relation are defined. Composition is both commutative
and associative. Top-down design means that for three interface models P ,
P ′, Q, and the composition of P and Q, P ‖ Q, if P ′ refines P , i.e., P ′ � P ,
then: (P ′ ‖ Q) � (P ‖ Q).

Interface automata are interface models. They are syntactically similar to
Input/Output Automata [11], but have different semantics. Figure 1 shows

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 81

Prod

in_us?

author!

name?

ISBN?

credit_no?

err_no!

ref_no!

Pay

ref_no err_no

in_cdn?
cdn_price!

cdn_price?

in_usin_cdnISBNname credit_no us_price cdn_price

authorus_pricecdn_price

us_price!

Fig. 1. Two IAs: Prod and Pay.

two IAs. The arrows on top represent the inputs of the system and arrows at
the bottom represent the outputs of the system. The initial state of the IA
is designated by an arrow with no source. IA Prod is a component (service)
that receives either an ISBN or a name of a book, and based on the request
provides the price of the book in Canadian or US dollars. The author of book
is also provided as an output of the system. Input actions are followed by “?”
and outputs by “!”. IA Pay carries out a credit card payment by receiving an
amount in Canadian dollars and a credit card number, and produces either a
reference number for a successful transaction or an error number. IAs assume
helpful environments; Pay, for example, assumes that the environment first
provides input value cdn price and then credit no.

Definition 2.1 An interface automaton (IA) P = 〈VP , iP ,AI
P ,AO

P ,AH
P , τP 〉

consists of VP a finite set of states, iP ∈ VP the initial state, AI
P , AO

P and AH
P ,

which are disjoint sets of input, output, and hidden actions, respectively, and
τP the set of transitions between states such that τP ⊆ VP ×AP × VP , where
AP = AI

P ∪ AO
P ∪ AH

P . �

Well-formed IAs are required to be deterministic on inputs [6]. In other
words, for any two input transitions (u, a, v) and (u, a, l), v = l.

The composition of two IAs consists of all possible interleaved transitions
of the two IAs, except for those actions that are shared. Two IAs are com-
posable if they do not take any of the same inputs, do not produce any of the
same outputs and the hidden actions of the two components do not overlap.
A hidden action is created through the composition of IA when an output
action of one component is internally consumed by an input action of another
component. This synchronization reduces the two actions to a hidden action
on a single transition.

Because of the assumption of a helpful environment, neither component
should have to wait to synchronize, i.e., if one component is ready to send an
action, the other should be ready to receive the action immediately. A state of
the product where one component would have to wait is considered an illegal
state and is eliminated (with transitions leading to it) from the composed IA.

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9782

a b c d

be

d? e! b!

0’ 1’ 2’ 3’30 1 2

a? b? c?

0 1 2 3

0’

1’

2’

3’

a?

a?

a?

a?

d? d?d?d?

e! e! e! e!

c?

c?

c?

c?
b;

Computing the Product of A and B

A B

a? d? e! b; c?

a c d

e

A||B

Fig. 2. Two composable IAs A and B and their composition A ‖ B.

In other words, the resulting composition will consist of only those states that
can satisfy environmental assumptions of both IAs.

As a simple example consider the IAs in Figure 2. IAs A and B are
composable and b is a shared action of the two IAs. The composition of A
and B is computed by considering the product of their states shown at the
right of the figure. Transitions on non-shared events are interleaved, and a
transition is created on a hidden event to represent the synchronization on
b (from state (1,2’) to state (2,3’)). Hidden events have “;” following their
names. In state (0,2’), IA B is immediately ready to send b but IA A is
not yet ready to receive it. State (0,2’) is an illegal state, as are (2,2’) and
(3,2’) shown in black boxes. These states are not included in the composition.
States and transitions on paths that lead to these illegal states where the
path consists entirely of output and hidden actions are also not included.
State (0,1’) (shown with filled in circle) is enabled with “e!” and as such can
lead to an illegal state. Thus we consider that state itself an illegal state.
In the presence of a helpful environment, execution could lead to an illegal
state from that state since the environment does not have any control over
output and hidden transitions. Non-reachable states are also eliminated. The
IA resulting from the composition of A and B is labelled A ‖ B in Figure 2.

The composition of the IAs Prod and Pay in Figure 1 is shown in Figure 3.
All states where Prod generates the output “us price” and Pay is not ready to
receive it are considered illegal states and are not included in the composition.
In this example, by removing such illegal states, transitions on “in us?” are
removed; however, “in us” still appears as an input of the composition.

IA Q refines IA P if Q provides the services of P ; it can have more inputs
but no more output actions. As such, a refinement of an IA does not constrain
the environment more than the original IA does. As an example, GenPay in
Figure 4 refines Pay in Figure 1; GenPay provides more services than Pay
since it can carry out payments in both Canadian and US dollars. Top-down

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 83

ISBNname in_us credit_no

ISBN?

name?
err_no!

err_no!
author!

ref_no!

ref_no!credit_no?

author!

authorerr_noref_no

Prod || Pay

in_cdn

cdn_price;in_cdn?
author!

credit_no?

Fig. 3. Prod ‖ Pay is the composition of two composable IAs in Figure 1.

credit_no?

us_price?

credit_no us_price

ref_no!

err_no!

err_noref_no

cdn_price

cdn_price?

Fig. 4. GenPay refines Pay in Figure 1.

design then guarantees that (Prod ‖ GenPay) refines (Prod ‖ Pay).

Refinement of IA is defined using a refinement relation between the states
of two IAs. If IA Q refines IA P , stated as Q � P , then an alternating
simulation relation [2] exists between the states of Q and P . For q ∈ VQ and
p ∈ VP , q � p if q has more than or the same input actions as p, and less
than or the same output actions as p. Also, for any state q′ reachable from
q, immediately or through hidden actions, there is a corresponding state p′

similarly reachable from p such that q′ � p′. All states reachable from a state
only through hidden actions are considered the same state for the purposes of
refinement. The initial state of Q must refine the initial state of P .

3 Interface Automata with Complex Actions

Interface automata with complex actions extend interface automata with the
ability to declare a sequence of transitions to be a complex action, which can-
not be interleaved with transitions from another component in composition.
Complex actions in IACA are meant to model software artifacts, such as meth-
ods or complex messages, which can have multiple constituent elements but
should not be interleaved with other actions in composition. As an exam-
ple, Figure 5 shows an IACA, CompPay, with a complex action pay in cdn,
represented by the dashed transition. This automaton is similar to IA Pay
of Figure 1 except that the actions cdn price? and credit no? cannot be
interleaved with actions from another component in composition. In fact,

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9784

us_pricecredit_no

4

credit_no?

ref_no!

err_no!
321

err_noref_no

CompPay

cdn_price

pay_in_cdn

cdn_price?

Fig. 5. IACA CompPay represents similar functionality as IA Pay in Figure 1.

pay in cdn models the environment assumption that the values for cdn price?
and credit no? arrive sequentially.

Complex actions represent either input or output behaviours, and thus
should consist entirely of either input or output actions, possibly along with
some hidden actions. Complex actions can only be a linear sequence of tran-
sitions. The states within a complex action are called internal states and are
represented by circles with an “x” in them. In Figure 5, states 1, 3, and 4 are
normal states of CompPay and state 2 is the only internal state.

First, we introduce IACA formally and then define its composition operator
and refinement relation. In this paper, because of space limitations, we omit
some of the formalism and proofs of our claims; the reader can refer to [8] for
the complete details.

Definition 3.1 An interface automaton with complex actions (IACA) P =
〈V N

P , V int
P , iP ,AI

P ,AO
P ,AH

P ,AC
P , τP , φP 〉 has the following elements:

• V N
P is the set of normal states.

• V Int
P is the set of internal states. V N

P ∩ V Int
P = ∅. The internal states are

the ones inside a complex action. We denote VP = V N
P ∪ V Int

P as the set of
all states.

• iP is the initial state. iP ∈ V N
P .

• AI
P ,AO

P ,AH
P are disjoint sets of input, output and hidden actions. These

are normal, non-complex actions. We denote AN
P = AI

P ∪AO
P ∪AH

P .

• AC
P is the set of complex actions where AC

P ∩A
N
P = ∅. We let AP = AC

P ∪A
N
P .

• τP ⊆ VP × AN
P × VP is the set of normal (non-complex) transitions. We

require that each v ∈ V Int
P is the source of exactly one transition and the

destination of exactly one transition in τP . Furthermore, IACA is input
deterministic, i.e.,
∀(u, a, v) ∈ τP , (u, a, v′) ∈ τP · a ∈ AI

P ⇒ (v = v′)

• φP ⊆ V N
P ×AC

P ×V N
P is the set of complex transitions. Every (u, c, v) ∈ φP is

associated with a sequence of non-complex transitions in τp called a complex

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 85

fragment. A complex fragment is defined as an alternating sequence of states
and normal actions:
frag(u, c, v) = 〈u, a0, s0, a1, s1, . . . , sn−1, an, v〉 where
· ∀i · si ∈ V Int

P (all si’s are internal states), and
· (∀i · ai ∈ AI

P ∪ AH
P) ∨ (∀i · ai ∈ AO

P ∪ AH
P) (all actions either belong

to union of input and hidden actions, or belong to union of output and
hidden actions), and

· ((u, a0, s0) ∈ τP) ∧ ((sn−1, an, v) ∈ τP) ∧ ∀i(0 < i < n) · (si−1, ai, si) ∈ τP

(every step is a non-complex transition).
· Considering the sequence of actions in a complex fragment,act(u, c, v),

where act(u, c, v) = 〈a0, a1, . . . , an〉, the following condition must hold:
(∀(u, c, v) ∈ φP ∧ ∀(u′, c, v′) ∈ φP · act(u, c, v) = act(u′, c, v′)) ∧
(∀(u, c, v) ∈ φP ∧ ∀(u′, d, v′) ∈ φP · act(u, c, v) = act(u′, d, v′) ⇒ d = c)
(Complex transitions with same complex actions have same sequence of
actions in their fragments, and complex actions with similar sequence of
actions have the same complex action names.) �

The constraints on definition of φP guarantee complex transitions are as-
sociated with unique sequence of actions.

Every IA is an IACA with empty sets of complex transitions and complex
actions. We call the IA that consists of all parts of an IACA except the
complex transitions and the complex actions, the equivalent IA to an IACA.

3.1 Composition

IACA composition is a binary function mapping two composable IACAs into
a new IACA. The main difference between IACA and IA composition is that
transitions within a complex action are not interleaved in IACA composition.
This behaviour is necessary to ensure all parameters of a method call or a
message arrive together in the exact order required. Synchronization between
actions of the two components may occur within a complex fragment, but each
complex fragment in the two IACAs being composed maintains its sequence of
actions in the composition (possibly with some actions having become hidden
actions). Furthermore, either the whole complex fragment is present in the
result or the complex fragment should not appear in the result at all. The
IACA composition of two composable IACAs is a subset of the IA composition
of the equivalent IAs for those two IACAs.

Figure 6 shows the composition of CompPay, in Figure 5, and component
Prod (now viewed as an IACA), in Figure 1. The transitions within the com-
plex transition pay in cdn in CompPay are not interleaved with other actions
and pay in cdn remains a complex action in Prod ‖ CompPay. The compo-
sition did involve a synchronization between the input cdn price in CompPay

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9786

name credit_noin_usISBN

ISBN?

name? err_no!

err_no!
author!

author!
ref_no!

ref_no!

credit_no?

ref_no err_no author

in_cdn

in_cdn? cdn_price;

pay_in_cdn

Fig. 6. Prod ‖ CompPay

and the output cdn price in Prod, which results in a hidden action within
the complex action pay in cdn. Similar to IA composition in Figure 3, states
where shared output action us price is an output but there is no input ready
from the other IACA are illegal states and are not included in the product.

We define the composition of two IACAs using the following sequence of
constructive steps:

(1) Compute the interleaved product of two IACAs, P ∗Q, leaving out inter-
leaving of transitions within complex actions.

(2) Remove illegal normal states from the product.

(3) Remove illegal internal states from the interleaved result of (2). We call
the result the legal interleaved product P � Q.

(4) Compute the complex transitions to result in P ‖ Q.

We use the simple IACAs of Figure 7 to illustrate these steps.

Two IACAs are composable if the equivalent IAs are composable, and the
normal actions in a complex transition either do not overlap with the actions
in the other component’s complex transitions, or for any that overlap, one is a
prefix of the actions of the other. For example, in Figure 7 the complex action
M of IACA B is a prefix of the complex action L of IACA A, thus they are
composable.

In the first step, we compute the interleaved product, P ∗Q, illustrated by
part (a) in Figure 7.

Definition 3.2 For two composable IACAs, P and Q, their sets of interleaved
states, VP∗Q, and interleaved transitions, τP∗Q, are:

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 87

0’

1’

2’

3’

4’

5’

a?

a?

a?

a?

a?

b;

g? g?

h? h?

b;

g?

d?

d?

d?

d?

d?

h?
c;

a? g? c; d?

a hgd

b;
L

30 1 2

a? c?

4

db ca

b? d?
L 1’ 2’ 3’

0’ g? b! c!

5’

4’h?

b!

hg

M

b c

(a) A*B

(b) A*B without normal illegal states (c) A||B

0’

1’

2’

3’

4’

5’

a?

b;

c;

g?

h?

b;

d?

BA

0 1 2 3 4

0 1 3 42

h?

Fig. 7. Computing IACA composition for two composable IACAs.

VP∗Q = VP × VQ

τP∗Q =

{((p, q), a, (p′, q′)) | (p, a, p′) ∈ τP ∧ (q, a, q′) ∈ τQ ∧ a ∈ Shared(P, Q)}

∪ {((p, q), a, (p′, q)) | (p, a, p′) ∈ τP ∧ a /∈ Shared(P, Q) ∧ p ∈ V N
P ∧ q ∈ V N

Q }

∪ {((p, q), a, (p′, q)) | (p, a, p′) ∈ τP ∧ a /∈ Shared(P, Q)∧

p ∈ V Int
P ∧ q ∈ V N

Q }

∪ /* similar to second and third sets above for Q */

where shared(P, Q) = AN
P ∩AN

Q . �

The first set of transitions in Definition 3.2 consists of synchronizations that
can happen between two IACAs on shared actions; the composability criteria
guarantee that each action a is an input action of one IACA and an output
of the other IACA. The second set of transitions consists of those that do
not involve shared actions and are transitions that exit normal states. The
third set is for transitions originating from internal states in one component;
these are not interleaved with the transitions from the other component. The
definition of the third set excludes the transitions where two internal states of
two IACAs issue different actions; no transitions will be initiated in those sit-
uations. However, if two such actions can synchronize, then they are included
in the first set. For each state (p, q) ∈ VP∗Q, if either p or q is an internal state,
then (p, q) is an internal state of the product. For example, in Figure 7, all

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9788

internal states associated with state 3 of A only initiate action d? and do not
interleave with other actions. At internal state (3, 2′) there is not any action
initiated since these are both internal states and they cannot synchronize with
their corresponding actions at those states, i.e., d? and c!. We have proven
that in the interleaved product, the internal states of the product satisfy the
constraints that they have at most one incoming and one outgoing transition.

In the second step, we remove the illegal normal states from the interleaved
product. The illegal normal states of two IACAs are the same as illegal states
for their equivalent IAs. Figure 7 shows the illegal normal states of the two
IACAs as black filled boxes in the interleaved product. These are states where
one component is ready to output an action but the other component is not
ready to receive it. We remove all illegal normal states and transitions that
are on paths that consist entirely of output and hidden actions that lead to
illegal normal states. We also remove all non-reachable transitions. The result
is shown in part (b) of Figure 7.

In the third step, we consider the illegal internal states, which are those
internal states of the product that have no outgoing transitions. These cannot
be part of a complex action because all complex fragments must terminate in
a normal state. The empty box in part (b) of Figure 7 is an illegal internal
state and thus should be removed. Removing illegal internal states may create
some additional illegal internal states that should be removed until there are no
more illegal internal states. We call the result at this point the legal interleaved
product (P � Q).

We have proven that in the legal interleaved product, every reachable in-
ternal state (p, q) ∈ VP�Q is part of a unique complex fragment in P � Q.
The fourth and final step is to determine the complex action associated with
each complex fragment. Given two composable IACAs, P and Q, Δ is a
function that returns a complex fragment associated with an internal state
of the product. Each complex fragment s = 〈(p0, q0), a0, (p1, q1), . . . , (pn, qn)〉
returned by function Δ can itself be projected into two alternating sequence
of states and actions, one belonging to P the other to Q. We define πP (s) =
〈p0, a0, p1, . . . pn〉 and πQ similarly. For these complex fragments, we have
proven the following:

Lemma 3.3 For a reachable internal state (p, q) ∈ VP�Q, its complex frag-
ment s = Δ(p, q), and the projections of s, πP (s) and πQ(s), one of the fol-
lowing is true:

• ∃!(p, d, p′) ∈ φP · frag(p, d, p′) = πP (s)

• ∃!(q, e, q′) ∈ φQ · frag(q, e, q′) = πQ(s)

where ∃! means “there exists a unique”.

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 89

Using Lemma 3.3, we can define the function complexP�Q that maps an
internal state into exactly one complex transition with action c. The complex
action c is uniquely identified by Lemma 3.3 except in the case where both
conditions are true; in this situation, we pick the complex action that has
some input constituent elements. Part (c) of Figure 7 shows the composition
of A and B.

Definition 3.4 The composition of two composable IACAs P and Q, P ‖ Q,
is an IACA defined as follows:

V N
P‖Q = V N

P × V N
Q

V Int
P‖Q = {(p, q) ∈ (VP × VQ)| (p ∈ V Int

P) ∨ (q ∈ V Int
Q)}

iP‖Q = (iP , iQ)

AI
P‖Q = (AI

P ∪AI
Q) \ Shared(P, Q)

AO
P‖Q = (AO

P ∪AO
Q) \ Shared(P, Q)

AH
P‖Q = AH

P ∪ AH
P ∪ Shared(P, Q)

AC
P‖Q = AC

P ∪ AC
Q

τP‖Q = τP�Q

φP‖Q = {complexP�Q(p, q)| (p, q) ∈ V Int
P‖Q} �

In practice, we can use only one of the internal states (the first one) of a
complex fragment to compute the complex transitions rather than all of them.

We have proven:

Theorem 3.5 Given two composable IACAs P and Q, P ‖ Q = Q ‖ P .

However, IACA is not a full-fledged interface model because composition is not
associative. The major consequence of lack of associativity is that we cannot
reason about composition of multiple IACA in an arbitrary order of composi-
tion. Instead, we have to consider multiple groupings of components. We plan
to investigate ways to determine groupings for composition that would yield
a maximal result, i.e., choosing composition parenthesizations that would in-
crease the chance of synchronization among different IACAs. In the absence
of shared actions among multiple IACAs, their composition is associative.

3.2 Refinement

A refined version of an IACA can replace it in a composition. As with IA, a
refined model may have more inputs and less outputs than the model it refines.
For Q to refine P , there must be an alternating simulation relation between

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9790

province

ref_no

ref_no!cdn_price?

pay_in_cdn

us_price? acc_no?

credit_no?

pay_in_us

us_price

province?
GenCompPay

cdn_pricecredit_no

Fig. 8. GenCompPay is the refinement of the IACA in Figure 5.

the states of Q and P . A state q refines a state p if q has more than or the same
inputs as p and less than or the same outputs as p. Additionally, for all states
q′ reachable from q immediately or through hidden actions, there must be a
p′ reachable from p such that q′ refines p′. For the complex actions of IACA,
a refinement may have additional input actions at the end of the complex
fragment or fewer output actions from the end of the complex fragment. This
restriction ensures that other IACAs that synchronize with this component in
composition are still able to synchronize with the refined version.

As an example, IACA in Figure 8 is the refinement of IACA CompPay in
Figure 5. This IACA is capable of carrying out payments in Canadian and US
dollars (more inputs), however, it only provides a reference number as output
and does not provide any error number (less outputs). Furthermore, the credit
card payment accepts the province to determine appropriate taxation (more
inputs at the end of a complex action).

Our goal in introducing IACA is to capture the idea of parameters to meth-
ods or complex messages in Web services using complex actions. IACA re-
finement matches the programming language concepts of optional parameters
and subclasses. In programming languages, such as C/C++, conventionally,
optional parameters must appear at the end of a function signature. In pro-
gramming languages, such as Java and C++, a subclass of a class can have
additional methods but also has the methods of its parent. Similarly, a refined
version of an IACA provides all of the original IACA’s complex actions and
possibly more.

To define IACA refinement, we must first partition the complex actions
into three sets based on whether the associated complex fragment has: (1)
input and hidden actions (CI

P), (2) output and hidden actions (CO
P), and (3)

only hidden actions (CH
P). The definition of refinement is as follows:

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 91

Definition 3.6 IACA Q refines IACA P , Q � P , if:

(1) AI
P ⊆ AI

Q (Q has the same or more normal inputs than P)

(2) AO
P ⊇ AO

Q (Q has the same or fewer normal outputs than P)

(3) CI
P ⊆ CI

Q (Q has the same or more complex input actions than P)

(4) CO
P ⊇ CO

Q (Q has the same or fewer complex output actions than P)

(5) iQ � iP (there is an alternating simulation relation � between the states
of Q and P) �

Constraint (5) above propagates the alternating simulation relation to apply
to all states of the two IACAs. By starting from the initial states of two
IACAs, the alternating simulation relation is checked on all corresponding
states. Next, we define this relation. For simplicity, we refer to the alternating
simulation relation as the refinement relation on states.

First, we define the states that are reachable immediately or through hid-
den actions from a state:

Definition 3.7 For each normal state p ∈ V N
P , the set ε–closureP (p) is de-

fined as the set containing p itself and the normal states that can be reached
from p through normal transitions with hidden actions. (These may include
transitions of a complex action.) �

Next, we define the sets of enabled normal and complex actions, which are
the actions that occur on transitions immediately exiting a state or reachable
from a state through hidden actions. States that are reachable through hidden
actions are considered the same for the purpose of refinement. We consider
only the inputs that exit all of these states (because the environment may
send an input to any of such state without knowing which of them exactly
receives it and so all of them should be receptive to the input), but consider
all outputs from these states (because the environment can accept any of such
outputs). The functions AI

P (p),AO
P (p),AC

P (p) return the input, output, and
complex actions, respectively, on transitions exiting state p.

Definition 3.8 For each normal state p ∈ V N
P of IACA P ,

• The sets of enabled normal input and output actions are:

EnNormI
P (p) = {a | ∀p′ ∈ ε–closureP (p) · a ∈ AI

P (p′)}

EnNormO
P (p) = {a | ∃p′ ∈ ε–closureP (p) · a ∈ AO

P (p′)}

• The sets of enabled complex input and complex output actions are:

EnCompI
P (p) = {a ∈ CI

P | ∀p′ ∈ ε–closureP (p) · a ∈ AC
P (p′)}

EnCompO
P (p) = {a ∈ CO

P | ∃p′ ∈ ε–closureP (p) · a ∈ AC
P (p′)}

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9792

• EnO
P (p) = EnNormO

P (p) ∪ EnCompO
P (p)

• EnI
P (p) = EnNormI

P (p) ∪ EnCompI
P (p) �

Having defined the sets of actions that can be expected from a state p and
states reachable from p through hidden transitions, we now define the sets of
states that can be reached from a state with a certain action.

Definition 3.9 For IACA P , a normal state p ∈ V N
P , and an enabled action

a ∈ EnI
P (p) ∪ EnO

P (p), the set of reachable states of p by a is:

DestP (p, a) = {p′|∃r ∈ ε–closureP (p) · (∃(r, a, p′) ∈ τP) ∨ (∃(r, a, p′) ∈ φP)}�

Finally, we can define the refinement relation between two states. This
relation intuitively says that for every state p ∈ V N

P , there is an alternating
simulation through state q ∈ V N

Q ; q is receptive to all input actions, normal
or complex, to which p is receptive; q does not issue outputs that p does not.

Definition 3.10 For two IACAs, P and Q, the binary relation alternating
simulation �⊆ V N

Q × V N
P between two states q ∈ V N

Q and p ∈ V N
P holds if all

of the following conditions are true:

• EnNormI
P (p) ⊆ EnNormI

Q(q)
(q may have the same or more normal inputs)

• EnNormO
P (p) ⊇ EnNormO

Q(q)
(q may have the same or fewer normal outputs)

• EnCompI
P (p) ⊆ EnCompI

Q(q)
(q may have the same or more complex inputs)

• EnCompO
P (p) ⊇ EnCompO

Q(q)
(q may have the same or fewer complex outputs)

• ∀a ∈ EnCompI
P (p) · ∀(m, a, n) ∈ φP · m ∈ ε–closureP (p) ⇒

∃(r, a, s) ∈ φQ · r ∈ ε–closure(q) ∧ act(m, a, n) � act(r, a, s)
(For every reachable complex transition from p on a complex input, there is
a reachable complex transition from q on the same action and the complex
fragment of P must be a prefix of the complex fragment of Q.)

• ∀a ∈ EnCompO
Q(q) · ∀ (r, a, s) ∈ φQ · r ∈ ε–closureP (q) ⇒

∃(m, a, n) ∈ φP · m ∈ ε–closure(p) ∧ act(r, a, s) � act(m, a, n)
(For every reachable complex transition from q on a complex output, there
is a reachable complex transition from p on the same action and the complex
fragment of Q must be a prefix of the complex fragment of P .)

• ∀a ∈ EnI
P (p) ∪ EnO

Q(q) · ∀ q′ ∈ DestQ(q, a) ⇒ ∃p′ ∈ DestP (p, a) · q′ � p′

(� holds for everything reachable under inputs for p and outputs for q) �

The purpose of refinement is to support top-down design. As an example,

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 93

consider the composition of GenCompPay, in Figure 8, with IACA of Prod in
Figure 1. Since GenCompPay � CompPay then (GenCompPay ‖ Prod) �
(CompPay ‖ Prod). We have proven:

Theorem 3.11 Given three IACAs P , Q and P ′ such that P ′ � P , and P
and Q are composable and P ′ and Q are composable, then (P ′ ‖ Q) � (P ‖ Q),
if the following conditions hold:

• Shared(P, Q) = Shared(P ′, Q)
(P ′ and P communicate with Q through the same set of shared actions)

• ∀(p′, p) · (p′ � p) ∧ (p′ ∈ V N
P ′) ∧ (p ∈ V N

P) ⇒
((AI

P ′(p′)\AI
P (p)) /∈ Shared(P, Q))∧((AO

P (p)\AO
P ′(p′)) /∈ Shared(P, Q))

(States of P ′ that are in the simulation relation with P , do not introduce
extra (nor eliminate) actions that belong to the shared actions of P and Q.)

• ∀(p′, p) · (p′ � p) ∧ (p′ ∈ V N
P ′) ∧ (p ∈ V N

P) ⇒
(∀(p, c, u) ∈ φP · ∃(p′, c, v) ∈ φP ′ ∧ (c ∈ CO

P ′)
⇒ ((set(act(p, c, u)))\(set(act(p′, c, v))) ∩ (Shared(P, Q))) = ∅)

(States of P ′ that are in the simulation relation with P should not intro-
duce output complex actions, shared with P , that introduce new actions that
belong to the shared actions of P and Q.)
Operator “set” maps a sequence to a set containing all members of the
sequence.

• ∀(p′, p) · (p′ � p) ∧ (p′ ∈ V N
P ′) ∧ (p ∈ V N

P) ⇒
(∀(p′, c, v) ∈ φP ′ · ∃(p, c, u) ∈ φP ∧ (c ∈ CI

P)
⇒ ((set(act(p′, c, v)))\(set(act(p, c, u))) ∩ (Shared(P, Q))) = ∅)

(States of P that are in the simulation relation with P ′ should not introduce
input complex actions, shared with P ′, that introduce new actions that belong
to the shared actions of P and Q.)

Theorem 3.11’s conditions require that P ′ preserves the same shared ac-
tions that P has with Q and plus requires P ′ to behave in accordance to P
on the shared actions of P and Q. In other words, we require that P ′ neither
increases nor decreases the shared actions that P and Q have. Addition-
ally, we also require that at the state level, the refined state and the original
state use the same set of shared actions. Comparing IACA’s top-down de-
sign criteria with IA, IA is more lenient; in a similar setting IA only requires
Shared(P ′, Q) ⊆ Shared(P, Q) for a similar top-down design result as in The-
orem 3.11. Our restriction arises from the fact that we are not only dealing
with illegal normal states (as IAs also deal with) but also deal with illegal in-
ternal states. In other words to support top-down design, P ′, the refinement
of P , should behave in such a way that it does not cause new illegal internal

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9794

states that the composition of P and Q does not create.

Another issue is that, in our theorem we require that P ′ and Q to be com-
posable; there is no guarantee that since P and Q are composable, then P ′

and Q should be composable as well. This happens because of extra complex
actions that P ′, as refinement of P , can have at its states. There is no way to
guarantee that such extra complex actions observe the overlapping compos-
ability criteria of IACAs. Alternatively, we could have defined our refinement
relation in such a way that it would have disallowed the extra complex actions,
and hence avoid explicitly requiring P ′ and Q to be composable.

4 Related Work

The idea of grouping activities in a sequential, non-interruptible manner is
common in many contexts. For example, in databases, the concept of a trans-
action is pivotal and resembles our “complex” actions. Within the context
of concurrency semantics, different approaches have been proposed to aug-
ment process algebraic-like languages to support non-interruptible sequences
of actions. Such approaches can be generally categorized into two groups:
(1) atomic actions (e.g., [9,3]) and (2) action refinement (e.g., [1]). The first
category includes the work most comparable to ours; Gorrieri et al. enhance
CCS [13] to support non-interruptible actions [9]. Their proposed composition
operator is non-associative and they suggest that non-associativity may be an
intrinsic property of handling complex actions. Input/Output Automata [11],
which inspired interface automata, also do not support associative composition
with action hiding. Action refinement approaches allow stepwise refinements
of models into their more concrete equivalents. For a recent comprehensive
treatment of action refinement, in a not entirely algebraic setting, readers can
refer to [14].

Promela, the language of the Spin model checker [10], implements complex
actions using the keywords atomic and d step. Promela’s atomic sequences
may block and allow interleaving if an input is not available or an output can-
not be consumed. d step sequences must be deterministic and do not allow
interleaving; a run-time error will occur if actions grouped in a d step can-
not synchronize when necessary. Our complex actions are similar to d step.
Composition in Promela is an n-ary operator and there is no defined notion
of refinement. As such, associativity in its composition is irrelevant.

While our approach has the same goals as much of the work mentioned
above, we differ because we have created an automata-based interface model
with complex actions that has most of the properties of interface models,
which are designed to be a concise way to specify component-based systems.

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 95

5 Conclusion and Future Work

We have introduced interface automata with complex actions (IACA), which
add complex actions to de Alfaro and Henzinger’s interface automata. The
transitions within a complex action are not interleaved with transitions from
another component in composition. Complex actions allow us to model non-
interruptible behaviour, which is needed to describe parameters of methods
or Web services messages. IACA has all the properties of an interface model
except for associativity of composition.

An immediate application for IACA, as described in [7], is in modelling
Web services. Web services communicate with other Web services and their
service requesters through input and output messages. Such messages are
basically XML messages. Complex XML messages can have constituent ele-
ments that should not be interleaved with other communication, and IACA is
a suitable means of modelling them.

In our future work, we plan to investigate how we can overcome the chal-
lenge of lack of associativity in IACA. Also, for Web services, we may need to
combine services in response to a search query. Through heuristics, we may
be able to reduce the need to search all possible associativity orderings.

References

[1] L. Aceto. Action Refinement in Process Algebras. Cambridge University Press, 1992.

[2] R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations. In
Proc. 9th Conferance on Concurrency Theory, Lecture Notes in Computer Science. Springer-
Verlag, September 1998.

[3] Gérard Boudol. Atomic actions (note). Bulletin of the European Association for Theoretical
Computer Science, 38:136–144, June 1989. Technical Contributions.

[4] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Volker Gruhn, editor,
Proceedings of the Joint 8th European Software Engeneering Conference and 9th ACM
SIGSOFT Symposium on the Foundation of Software Engeneering (ESEC/FSE-01), volume
26, 5 of Software Engineering Notes, pages 109–120. ACM Press, September 10–14 2001.

[5] Luca de Alfaro and Thomas A. Henzinger. Interface Theories for Component-Based Design.
In Proceedings of the First International Workshop on Embedded Software, volume 2211, pages
148–165. Lecture Notes in Computer Science 2211, Springer-Verlag, 2001.

[6] Luca de Alfaro and Thomas A. Henzinger. Interface-Based Design. In Proceedings of the
Marktoberdorf Summer School, Kluwer, Engineering Theories of Software Intensive Systems,
2004.

[7] Shahram Esmaeilsabzali. An Interface Approach to Discovery and Composition of Web
Services. Master of Mathematics, School of Computer Science, University of Waterloo, June
2004.

[8] Shahram Esmaeilsabzali, Farhad Mavaddat, and Nancy A. Day. Interface automata with
complex actions. Technical Report CS-2005-26, University of Waterloo, School of Computer
Science, 2005.

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–9796

[9] R. Gorrieri, S. Marchetti, and U. Montanari. A2CCS: atomic actions for CCS. Theoretical
Computer Science, 72(2-3):203–223, May 1990.

[10] Gerard J. Holzmann. The model checker Spin. IEEE Trans. Soft. Eng., 23(5):279–295, 1997.

[11] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of the 6th ACM Symposium on Principles of Distributed Computing, pages 519–
543, 1987.

[12] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

[13] R. Milner. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, 1989. SU Fisher Research 511/24.

[14] Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for
concurrent systems. Acta Inf., 37(4-5):229–327, 2000.

S. Esmaeilsabzali et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 79–97 97

	Introduction
	Background: Interface Automata
	Interface Automata with Complex Actions
	Composition
	Refinement

	Related Work
	Conclusion and Future Work
	References

