1,151 research outputs found

    Combination of electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy to determine indium concentration in InGaN thin film structures

    Get PDF
    We demonstrate a method to determine the indium concentration, x, of In x Ga1-x N thin films by combining plasmon excitation studies in electron energy-loss spectroscopy (EELS) with a novel way of quantification of the intensity of x-ray lines in energy-dispersive x-ray spectroscopy (EDXS). The plasmon peak in EELS of InGaN is relatively broad. We fitted a Lorentz function to the main plasmon peak to suppress noise and the influence from the neighboring Ga 3d transition in the spectrum, which improves the precision in the evaluation of the plasmon peak position. As the indium concentration of InGaN is difficult to control during high temperature growth due to partial In desorption, the nominal indium concentrations provided by the growers were not considered reliable. The indium concentration obtained from EDXS quantification using Oxford Instrument ISIS 300 x-ray standard quantification software often did not agree with the nominal indium concentration, and quantification using K and L lines was inconsistent. We therefore developed a self-consistent iterative procedure to determine the In content from thickness-dependent k-factors, as described in recent work submitted to Journal of Microscopy. When the plasmon peak position is plotted versus the indium concentration from EDXS we obtain a linear relationship over the whole compositional range, and the standard error from linear least-squares fitting shows that the indium concentration can be determined from the plasmon peak position to within Δx = ± 0.037 standard deviation

    Indium substitution effect on the topological crystalline insulator family (Pb1x_{1-x}Snx_{x})1y_{1-y}Iny_{y}Te: Topological and superconducting properties

    Full text link
    Topological crystalline insulators (TCIs) have been of great interest in the area of condensed matter physics. We investigated the effect of indium substitution on the crystal structure and transport properties in the TCI system (Pb1x_{1-x}Snx_{x})1y_{1-y}Iny_{y}Te. For samples with a tin concentration x50%x\le50\%, the low-temperature resisitivities show a dramatic variation as a function of indium concentration: with up to ~2% indium doping the samples show weak-metallic behavior, similar to their parent compounds; with ~6% indium doping, samples have true bulk-insulating resistivity and present evidence for nontrivial topological surface states; with higher indium doping levels, superconductivity was observed, with a transition temperature, Tc, positively correlated to the indium concentration and reaching as high as 4.7 K. We address this issue from the view of bulk electronic structure modified by the indium-induced impurity level that pins the Fermi level. The current work summarizes the indium substitution effect on (Pb,Sn)Te, and discusses the topological and superconducting aspects, which can be provide guidance for future studies on this and related systems.Comment: 16 pages, 8 figure

    Sub-nanosecond excitonic luminescence in ZnO:In nanocrystals

    Get PDF
    The financial support of research European Union ERA.NET RUS_ST20170-51 . This work was partly supported by Russian Foundation for Basic Research, Russia , project No. 18-52-76002 . The sample preparation was carried out as part of SFERA II project -Transnational Access activities ( European Union 7th Framework Programme Grant Agreement N3126430 ).The effects of indium concentration influence on the morphology, luminescence spectra and luminescence decay kinetics of ZnO:In nanocrystals prepared by the solar physical vapour deposition method are investigated. While undoped ZnO nanocrystals exhibit tetrapod-like morphology, with increasing indium concentration the tetrapods are transformed into particles whose average size decreases with increasing indium concentration. The results of time-resolved luminescence studies of undoped and indium doped ZnO nanocrystals showed that by increasing indium concentration the decay time falls and luminescence intensity decreases.ERA.NET RUS_ST20170-51; Russian Foundation for Basic Research No. 18-52-76002; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Carrier localization mechanisms in InGaN/GaN quantum wells

    Full text link
    Localization lengths of the electrons and holes in InGaN/GaN quantum wells have been calculated using numerical solutions of the effective mass Schr\"odinger equation. We have treated the distribution of indium atoms as random and found that the resultant fluctuations in alloy concentration can localize the carriers. By using a locally varying indium concentration function we have calculated the contribution to the potential energy of the carriers from band gap fluctuations, the deformation potential and the spontaneous and piezoelectric fields. We have considered the effect of well width fluctuations and found that these contribute to electron localization, but not to hole localization. We also simulate low temperature photoluminescence spectra and find good agreement with experiment.Comment: 7 pages, 7 figure

    Origin of the Broad Lifetime Distribution of Localized Excitons in InGaN/GaN Quantum Dots

    Full text link
    We derive an energy-dependent decay-time distribution function from the multi-exponential decay of the ensemble photoluminescence (PL) of InGaN/GaN quantum dots (QDs), which agrees well with recently published single-QD time-resolved PL measurements. Using eight-band k.p modelling, we show that the built-in piezo- and pyroelectric fields within the QDs cause a sensitive dependence of the radiative lifetimes on the exact QD geometry and composition. Moreover, the radiative lifetimes also depend heavily on the composition of the direct surrounding of the QDs. A broad lifetime distribution occurs even for moderate variations of the QD structure. Thus, for unscreened fields a multi-exponential decay of the ensemble PL is generally expected in this material system.Comment: 5 pages, 4 figures. accepted at Physica Status Solid

    Electron microscopic and optical investigations of the indium distribution GaAs capped InxGa1-xAs islands

    Get PDF
    Results from a structural and optical analysis of buried InxGa1-xAs islands carried out after the process of GaAs overgrowth are presented. It is found that during the growth process, the indium concentration profile changes and the thickness of the wetting layer emanating from a Stranski-Krastanow growth mode grows significantly. Quantum dots are formed due to strong gradients in the indium concentration, which is demonstrated by photoluminescence and excitation spectroscopy of the buried InxGa1-xAs islands. (C) 1997 American Institute of Physics

    Low noise high performance 50nm T-gate metamorphic HEMT with cut-off frequency f<sub>T</sub> of 440 GHz for millimeterwave imaging receivers applications

    Get PDF
    The 50 nm m-HEMT exhibits extremely high f&lt;sub&gt;T&lt;/sub&gt;, of 440GHz, low F&lt;sub&gt;min&lt;/sub&gt; of 0.7 dB, associated gain of 13 dB at 26 GHz with an exceptionally high Id of 200 mA/mm and gm of 950 ms/mm at low noise biased point

    Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Full text link
    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in Inx_{x}Ga1x_{1-x}As epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to qualitatively agree with the experimental results.Comment: 16 pages, 8 figure
    corecore