593,873 research outputs found

    FOXD3 Regulates VISTA Expression in Melanoma.

    Get PDF
    Immune checkpoint inhibitors have improved patient survival in melanoma, but the innate resistance of many patients necessitates the investigation of alternative immune targets. Many immune checkpoint proteins lack proper characterization, including V-domain Ig suppressor of T cell activation (VISTA). VISTA expression on immune cells can suppress T cell activity; however, few studies have investigated its expression and regulation in cancer cells. In this study, we observe that VISTA is expressed in melanoma patient samples and cell lines. Tumor cell-specific expression of VISTA promotes tumor onset in vivo, associated with increased intratumoral T regulatory cells, and enhanced PDL-1 expression on tumor-infiltrating macrophages. VISTA transcript levels are regulated by the stemness factor Forkhead box D3 (FOXD3). BRAF inhibition upregulates FOXD3 and reduces VISTA expression. Overall, this study demonstrates melanoma cell expression of VISTA and its regulation by FOXD3, contributing to the rationale for therapeutic strategies that combine targeted inhibitors with immune checkpoint blockade

    The multifaceted roles of PI3Kγ in hypertension, vascular biology, and inflammation

    Get PDF
    PI3Kγ is a multifaceted protein, crucially involved in cardiovascular and immune systems. Several studies described the biological and physiological functions of this enzyme in the regulation of cardiovascular system, while others stressed its role in the modulation of immunity. Although PI3Kγ has been historically investigated for its role in leukocytes, the last decade of research also dedicated efforts to explore its functions in the cardiovascular system. In this review, we report an overview recapitulating how PI3Kγ signaling participates in the regulation of vascular functions involved in blood pressure regulation. Moreover, we also summarize the main functions of PI3Kγ in immune responses that could be potentially important in the interaction with the cardiovascular system. Considering that vascular and immune mechanisms are increasingly emerging as intertwining players in hypertension, PI3Kγ could be an intriguing pathway acting on both sides. The availability of specific inhibitors introduces a perspective of further translational research and clinical approaches that could be exploited in hypertension

    Environmental Circadian Disruption Elevates the IL-6 Response to Lipopolysaccharide in Blood

    Get PDF
    The immune system is regulated by circadian clocks within the brain and immune cells. Environmental circadian disruption (ECD), consisting of a 6-h phase advance of the light:dark cycle once a week for 4 weeks, elevates the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. This indicates that circadian disruption adversely affects immune function; however, it remains unclear how the circadian system regulates this response under ECD conditions. Here, we develop an assay using ex vivo whole-blood LPS challenge to investigate the circadian regulation of immune responses in mice and to determine the effects of ECD on these rhythms. LPS-induced IL-6 release in whole blood was regulated in a circadian manner, peaking during subjective day under both entrained and free-running conditions. This LPS-induced IL-6 release rhythm was associated with daily variation in both white blood cell counts and immune cell responsiveness. ECD increased the overall level of LPS-induced IL-6 release by increasing immune cell responsiveness and not by affecting immune cell number or the circadian regulation of this rhythm. This indicates that ECD produces pathological immune responses by increasing the proinflammatory responses of immune cells. Also, this newly developed whole blood assay can provide a noninvasive longitudinal method to quantify potential health consequences of circadian disruption in humans

    Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases

    Get PDF
    Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy

    A model of host response to a multi-stage pathogen

    Full text link
    We model the immune surveillance of a pathogen which passes through nn immunologically distinct stages. The biological parameters of this system induce a partial order on the stages, and this, in turn, determines which stages will be subject to immune regulation. This corresponds to the system's unique asymptotically stable fixed point.Comment: 22 pages, no figure

    Adaptive immunity in cancer immunology and therapeutics.

    Get PDF
    Copyright: © the authors; licensee ecancermedicalscience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The vast genetic alterations characteristic of tumours produce a number of tumour antigens that enable the immune system to differentiate tumour cells from normal cells. Counter to this, tumour cells have developed mechanisms by which to evade host immunity in their constant quest for growth and survival. Tumour-associated antigens (TAAs) are one of the fundamental triggers of the immune response. They are important because they activate, via major histocompatibility complex (MHC), the T cell response, an important line of defense against tumourigenesis. However, the persistence of tumours despite host immunity implies that tumour cells develop immune avoidance. An example of this is the up-regulation of inhibitory immune checkpoint proteins, by tumours, which induces a form of self-tolerance. The majority of monoclonal antibodies in clinical practice have been developed to target tumour-specific antigens. More recently there has been research in the down-regulation of immune checkpoint proteins as a way of increasing anti-tumour immunity

    Immunization and Aging: a Learning Process in the Immune Network

    Full text link
    The immune system can be thought as a complex network of different interacting elements. A cellular automaton, defined in shape-space, was recently shown to exhibit self-regulation and complex behavior and is, therefore, a good candidate to model the immune system. Using this model to simulate a real immune system we find good agreement with recent experiments on mice. The model exhibits the experimentally observed refractory behavior of the immune system under multiple antigen presentations as well as loss of its plasticity caused by aging.Comment: 4 latex pages, 3 postscript figures attached. To be published in Physical Review Letters (Tentatively scheduled for 5th Oct. issue

    The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway

    Get PDF
    Non-melanoma skin cancer is the most frequent malignancy in Caucasian populations. Evidence suggests the involvement of cutaneous Human Papillomavirus (HPV) of the genus beta () in this disease. The ability of E6 and E7 of mucosal HPV to promote cellular transformation and inhibit immune response-related pathways plays a key role in cervical carcinogenesis. HPV-38 E6 and E7 display transforming activities in in vitro and in vivo models, but their impact on immune surveillance is unknown. Here we show that HPV-38 E6 and E7 affect the IFN-induced up-regulation of MHC class I. Expression of the two viral proteins in HaCaT keratinocytes led to a decrease of MHC I levels. This down-regulation is associated with a reduction of expression of MHC I heavy chain, of the peptide chaperone TAP and of the STAT-1 downstream effector IRF-1. The down-regulation of these proteins is ultimately due to the inhibition of STAT-1 expression. Analysis of cells expressing either HPV-38 E6 or E7 suggests that these effects are primarily the result of E6 expression, although a contribution by E7 cannot be excluded. We conclude that HPV-38 encodes oncoproteins that potentially contribute to the evasion of host immune surveillance

    Interferon-lambda: A potent regulator of intestinal viral infections

    Get PDF
    Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule
    • …
    corecore