19,953 research outputs found

    Image segmentation for improved consistency in image-interpretation of opium poppy

    Get PDF
    The image-interpretation of opium poppy crops from very high resolution satellite imagery forms part of the annual Afghanistan opium surveys conducted by the United Nations Office on Drugs and Crime and the United States Government. We tested the effect of generalization of field delineations on the final estimates of poppy cultivation using survey data from Helmand province in 2009 and an area frame sampling approach. The sample data was reinterpreted from pan-sharpened IKONOS scenes using two increasing levels of generalization consistent with observed practice. Samples were also generated from manual labelling of image segmentation and from a digital object classification. Generalization was found to bias the cultivation estimate between 6.6% and 13.9%, which is greater than the sample error for the highest level. Object classification of image-segmented samples increased the cultivation estimate by 30.2% because of systematic labelling error. Manual labelling of image-segmented samples gave a similar estimate to the original interpretation. The research demonstrates that small changes in poppy interpretation can result in systematic differences in final estimates that are not included within confidence intervals. Segmented parcels were similar to manually digitized fields and could provide increased consistency in field delineation at a reduced cost. The results are significant for Afghanistan’s opium monitoring programmes and other surveys where sample data are collected by remote sensing

    Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs

    Get PDF
    The idea of computer vision as the Bayesian inverse problem to computer graphics has a long history and an appealing elegance, but it has proved difficult to directly implement. Instead, most vision tasks are approached via complex bottom-up processing pipelines. Here we show that it is possible to write short, simple probabilistic graphics programs that define flexible generative models and to automatically invert them to interpret real-world images. Generative probabilistic graphics programs consist of a stochastic scene generator, a renderer based on graphics software, a stochastic likelihood model linking the renderer's output and the data, and latent variables that adjust the fidelity of the renderer and the tolerance of the likelihood model. Representations and algorithms from computer graphics, originally designed to produce high-quality images, are instead used as the deterministic backbone for highly approximate and stochastic generative models. This formulation combines probabilistic programming, computer graphics, and approximate Bayesian computation, and depends only on general-purpose, automatic inference techniques. We describe two applications: reading sequences of degraded and adversarially obscured alphanumeric characters, and inferring 3D road models from vehicle-mounted camera images. Each of the probabilistic graphics programs we present relies on under 20 lines of probabilistic code, and supports accurate, approximately Bayesian inferences about ambiguous real-world images.Comment: The first two authors contributed equally to this wor

    Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone

    Get PDF
    The author has identified the following significant results. Four LANDSAT scenes were analyzed for the Harbor Island area test sites to produce land cover and land use maps using both image interpretation and computer-assisted techniques. When evaluated against aerial photography, the mean accuracy for three scenes was 84% for the image interpretation product and 62% for the computer-assisted classification maps. Analysis of the fourth scene was not completed using the image interpretation technique, because of poor quality, false color composite, but was available from the computer technique. Preliminary results indicate that these LANDSAT products can be applied to a variety of planning and management activities in the Texas coastal zone

    Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone. Volume 1: Text

    Get PDF
    The author has identified the following significant results. Image interpretation and computer-assisted techniques were developed to analyze LANDSAT scenes in support of resource inventory and monitoring requirements for the Texas coastal region. Land cover and land use maps, at a scale of 1:125,000 for the image interpretation product and 1:24,000 for the computer-assisted product, were generated covering four Texas coastal test sites. Classification schemes which parallel national systems were developed for each procedure, including 23 classes for image interpretation technique and 13 classes for the computer-assisted technique. Results indicate that LANDSAT-derived land cover and land use maps can be successfully applied to a variety of planning and management activities on the Texas coast. Computer-derived land/water maps can be used with tide gage data to assess shoreline boundaries for management purposes

    Implementation of ILLIAC 4 algorithms for multispectral image interpretation

    Get PDF
    Research has focused on the design and partial implementation of a comprehensive ILLIAC software system for computer-assisted interpretation of multispectral earth resources data such as that now collected by the Earth Resources Technology Satellite. Research suggests generally that the ILLIAC 4 should be as much as two orders of magnitude more cost effective than serial processing computers for digital interpretation of ERTS imagery via multivariate statistical classification techniques. The potential of the ARPA Network as a mechanism for interfacing geographically-dispersed users to an ILLIAC 4 image processing facility is discussed

    Image interpretation for a multilevel land use classification system

    Get PDF
    The potential use is discussed of three remote sensors for developing a four level land use classification system. Three types of imagery for photointerpretation are presented: ERTS-1 satellite imagery, high altitude photography, and medium altitude photography. Suggestions are given as to which remote sensors and imagery scales may be most effectively employed to provide data on specific types of land use

    Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone

    Get PDF
    The author has identified the following significant results. The most significant ADP result was the modification of the DAM package to produce classified printouts, scaled and registered to U.S.G.S., 71/2 minute topographic maps from LARSYS-type classification files. With this modification, all the powerful scaling and registration capabilities of DAM become available for multiclass classification files. The most significant results with respect to image interpretation were the application of mapping techniques to a new, more complex area, and the refinement of an image interpretation procedure which should yield the best results

    Image Interpretation Using Appraisal Analysis

    Get PDF
    In geophysical inversion, a significant effort is invested to obtain images of the Earth from finite data. The first step is to obtain an image i.e. solve the inverse problem. This step alone provides significant challenges that are not addressed inthis paper. The next step is to interpret the image in terms of specific questions. For example, what can we say about the average value of a physical property within a certain region of the model? What scale information can we resolve from the data? These questions are problem dependent and may require that inversion be carried out several times to arrive at a satisfactory answer. Therefore the solution to an inverse problem is only a step towards answering these questions. Appraisal analysis of the solution takes the next step by providing a set of tools to judge and select from the possibly infinite suite of images that adequately fit our observations. We discuss the use of point spread functions and averaging kernels in the interpretation of images. We use a controlled source electromagnetic example to demonstrate the methodology

    RadBench : Benchmarking Image Interpretation Performance

    Get PDF
    RadBench provides a reliable objective measure of image interpretation performance. A key contribution to knowledge is recognising variation in performance by image bank and the importance of benchmarking linked to a prescribed development pathway through CPD. RadBench has implications for practice at all stages of professional development. The results are of value to the individual, to organisations, governments, and to professional bodies. With increasing adoption, a life-long profile can be generated which will help inform clinical training and practice on a global scale. Partnering with other institutions enables the rich data source to generate and support further research. The on-line product enables wide reach to all imaging professions regardless of geography. A multi-lingual version is in development
    • …
    corecore