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The image-interpretation of opium poppy crops from very high resolution satellite
imagery forms part of the annual Afghanistan opium surveys conducted by the United
Nations Office on Drugs and Crime and the United States Government. We tested
the effect of generalisation of field delineations on the final estimates of poppy cul-
tivation using survey data from Helmand province in 2009 and an area frame sam-
pling approach. The sample data was reinterpreted from pan-sharpened IKONOS
scenes using two increasing levels of generalisation consistent with observed prac-
tice. Samples were also generated from manual labelling of image segmentation and
from a digital object classification. Generalisation was found to bias the cultivation
estimate between 6.6% and 13.9%, which is greater than the sample error for the high-
est level. Object classification of image-segmented samples increased the cultivation
estimate by 30.2% because of systematic labelling error. Manual labelling of image-
segmented samples gave a similar estimate to the original interpretation. The re-
search demonstrates that small changes in poppy interpretation can result in system-
atic differences in final estimates that are not included within confidence intervals.
Segmented parcels were similar to manually digitised fields and could provide in-
creased consistency in field delineation at a reduced cost. The results are significant
for Afghanistan’s opium monitoring programmes and other surveys where sample
data are collected by remote sensing.

1 Introduction

Annual Statistics on opium cultivation are produced by the United Nations Office on
Drugs and Crime/Afghanistan’s Ministry of Counter Narcotics (UNODC) and the United
States (US) Government to monitor the annual production of illicit opium and evaluate
the success of counter narcotics (CN) programmes. They conduct independent surveys
based on the extrapolation of area measurements collected at sample locations. The total
agricultural area is split into primary sampling units (PSU), from which a statistically rep-
resentative selection is taken. The cropped area of poppy within each PSU is calculated
and the total area of poppy is estimated by multiplying the mean proportion of crop from
the sample by the area of agriculture. The surveys differ in their sample proportion, size
of PSU and use of stratification.

In both surveys, the area of opium poppy at sample locations is measured by di-
rectly digitising crop parcel boundaries from very high resolution (VHR) satellite im-
agery. Crops are identified by trained interpreters using the standard image-interpretation
elements of size, shape, shadow, colour, texture, pattern and association. To maintain
consistency, an interpretation key is developed from prior knowledge of the appearance
of opium crops in VHR imagery. Keys contain examples of the different crop types and
any variation in their appearance with growth stage or management practices.

For accurate area estimates the digitised sample should be a true representation of
reality at the sample site. Sources of bias in image interpretation are incorrectly labelled
parcels (labelling error) (Gallego, 2006) and imprecision of class definitions relating to
what is seen on the imagery e.g. where to place a boundary on a continuum (Foody,
2002). Mapping the true location of parcel boundaries requires a resolution high enough
to visualise distinct boundaries between features in the imagery (Goodchild and Hunter,
1997). Other potential sources of bias are the scale of digitisation and the inclusion of
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features within crop polygons due to image resolution or the minimum mapping unit
(Carfagna and Gallego, 2005).

The effect of differences in interpretation is the subject of debate between the UNODC
and US survey teams as it is difficult to measure and not accounted for in the confidence
interval of the final estimate. This article presents the results of research into interpre-
tation bias caused by systematic differences in image-interpretation of poppy. The re-
search questions were: is generalisation in field delineation a significant source of bias
in the survey estimate; and can image processing methods improve the consistency of
interpretation. This work was part of a wider project for improving cultivation estimates
in Afghanistan that took place between 2003–2009, described in Taylor et al. (2010).

2 Data and methods

2.1 Stratified area frame sampling

A stratified area frame sampling methodology was used as part of the wider investigation
into the differences between the UNODC and US surveys. The approach, referred to as
GeoTools in some literature, is designed to improve the accuracy of a ratio sample estimate
by stratification of the sample frame using satellite imagery (Koeln and Kollasch, 2000).
The area of poppy within each stratum 𝑠 is calculated from 𝑛 number of samples by

𝑚𝑠 =

𝑛

∑
𝑖=1

𝑚𝑖

𝑛

∑
𝑖=1

𝑎𝑖

𝐴𝑠, (1)

where 𝑚𝑖 is the area of the poppy within stratum 𝑠 in sample 𝑖, 𝑎𝑖 is the total area of
sample 𝑖 in stratum 𝑠 and 𝐴𝑠 is the total area of the stratum in the study area. The total
area estimate for poppy (𝑀) is the combined estimates for all strata,

𝑀 =
𝑥

∑
𝑠=1

𝑚𝑠. (2)

The purpose of stratification is to minimise the within-stratum variance compared to
the variance between strata by grouping areas that are homogeneous, with low variation
in the occurrence of poppy (Cochran, 1977).

The confidence interval of the estimate is calculated by bootstrapping, which uses
Monte Carlo simulation to approximate the distribution of 𝑀 from 𝑁 repetitions of equa-
tion 1 using a random draw of the sample,

𝑀∗ = 𝑀(𝑋∗
1, … , 𝑋∗

𝑛) (3)

where 𝑋∗
1, … , 𝑋∗

𝑛 is an independant random selection of the original samples with replace-
ment. This results in 𝑁 calculations of 𝑀∗. The upper and lower confidence intervals are
found by ordering the values of 𝑀∗ and taking the value corresponding to the percentile
required. For example, 𝑀∗

500 and 𝑀∗
9500 for the 90% confidence level for 𝑁 = 10, 000.

The samples were selected by first defining a 10 km × 10 km grid coincident with the
UNODC’s image collection areas, known as blocks, which was sub-divided into 1 km × 1
km PSUs. Random 1 km squares were selected within each block until a 2% sample was
obtained. A map of agricultural production was used to mask out PSUs with less than
20% of their area in agriculture.
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The research was carried out using a subset of the 2009 Helmand Province area frame
sampling dataset, comprising 61 samples interpreted from 14 IKONOS pan-sharpened
VHR images (figure 1). The spectral strata were created from a 32 m resolution multi-
spectral image (red, green, near-infrared wavebands) from the Disaster Monitoring Con-
stellation (DMC).

Sample locations

IKONOS image footprints

Stratified agricultural area

Helmand

Study area

¯ 0 10 205
km

Afghanistan

Figure 1: Map showing sample distribution and extent of stratified agricultural area for the central part of
Helmand Province, Afghanistan 2009.

2.2 Image data and processing

Image acquisition for DMC and IKONOS imagery was timed to coincide with poppy flow-
ering, the optimum growth stage for image-interpretation, using an information system
based on time series Normalised Difference Vegetation Index (NDVI) from the Moderate
Resolution Spectroradiometer, described in Simms et al. (2014).

The DMC level L1R image, acquired on 25 March 2009 was orthorectified using the
bespoke sensor model in Keystone Workstation® software with a controlled image base
(CIB) and a 30 m digital elevation model (DEM), to achieve sub-pixel geometric accuracy.
The Iterative Self-Organising Data Analysis Technique (ISODATA) was used to cluster
the image pixels into 90 spectral signatures and the image classified using a maximum
likelihood discriminant function. The resulting classified pixels were grouped into agri-
culture and non-agriculture information classes by visual image-interpretation. The non-
agricultural classes were then removed and the agricultural mask was manually edited
in areas of spectral confusion between natural vegetation and agriculture. The original
image was then subset to the area within the agricultural mask and the classification pro-
cedure repeated with 30 classes to produce the spectral strata.

The IKONOS geo-bundle images were pan-sharpened using a modified IHS approach
to 1 m resolution (Siddiqui, 2003). The greater spectral range of the IKONOS panchro-
matic band compared to the combined multispectral bands was found to increase bright-
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ness in the blue band of the pan-sharpened image. This effect was reduced by modifying
the panchromatic band to remove part of the near-infrared signal,

𝜌∗
𝑝 = (1 − 𝜌4

𝜌1 + 𝜌2 + 𝜌3 + 𝜌4
)𝜌𝑝, (4)

where 𝜌𝑝 is the radiance of the panchromatic band and 𝜌𝑛 is the radiance of multispec-
tral band 𝑛, before applying the modified IHS algorithm. Each image was then ortho-
resampled using the vendor supplied Rational Polynomial Camera model refined using
control points from the CIB and 30 m DEM (Grodecki and Dial, 2001).

2.3 Image-interpretation and segmentation

The frame sampling analysis was conducted for a series of sample sets, each comprising 61
samples, created using 5 different interpretation methods. They were: the original 2009
image interpretations; two levels of increasing generalisation in field boundaries; auto-
matic segmentation with manual classification; and automatic segmentation with object
classification.

The original 1 km samples were image-interpreted from 14 pan-sharpened IKONOS
images (table 1). Each image was assessed for crop growth stage and then contrast stretched
to optimise the display of the 16 bit data and reduce any distortion during visual display
(8 bit) in the software. Sample sites were assigned to trained interpreters who digitised
poppy and cereal field parcels using the standard image interpretation method. Poppy
crops are distinguished from crops of wheat and alfalfa by visual differences in colour
and texture in true-colour and false-colour (near-infrared) VHR composite images. Bare
areas of fields and within-field features visible in the imagery were not included within
the cropped poppy area.

Table 1: IKONOS image acquisition dates (2009) and poppy growth stage.

Date No. of images Growth stage

25 March 7 Stem elongation
3 April 1 Flowering
8 April 1 Flowering

11 April 2 Flowering
25 April 3 Capsule

Interpretation consistency was cross-checked by assigning 5% of the samples to mul-
tiple interpreters. Systematic differences in interpretation were identified in the overlap-
ping samples and corrected. Consistency in colour representation of crops in false-colour
and true-colour composites (stretching) was maintained through supervision and use of
auxiliary information on timing from the crop information system. Every sample was
cross checked by an experienced interpreter before analysis.

Copies of the original 2009 image-interpreted samples were edited to create two sam-
ple sets with increasing levels of generalisation. Samples were first vectorised and poly-
gon boundaries smoothed to improve the cartographic quality. Each sample was then
manually re-interpreted using the original VHR imagery. For level 1, paths and single-
vehicle width gaps between cropped areas with little or no field margin vegetation were
manually removed. Single lines of trees and narrow irrigation channels between poly-
gons were removed by digitising a new boundary along the centre line of the linear fea-
ture. Un-cropped areas less than approximately 50 m2 within parcels were merged with
the surrounding polygon. Poor quality crops not previously delineated were added to
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the mapped area. Convoluted field boundaries found in polygons where crop density
reduced gradually to bare soil were simplified manually.

Level 2 was a further generalisation of the level 1 interpretation. Edits were made
to remove paths and single vehicle-width tracks with vegetated margins. Single lines of
trees and tracks associated with irrigation channels were removed by digitising a centre
line along features. Un-cropped areas greater than 50 m2 within parcels that were inter-
preted as cultivated were merged with the surrounding polygon. Finally, partial fields
with areas of poor or damaged crops were extended to the whole field parcel where there
was evidence of an intention to cultivate.

Figure 2 shows examples of level 1 and 2 edits made to sample 39 and sample 36 over-
laid on IKONOS near-infrared false colour imagery. At level 1, field polygons for sam-
ple 39 include linear features between parcels such as trees, tracks and drainage ditches.
Within-field areas of bare soil or poor crop are removed at level 2 and field parcels are
extended to boundary edges. In sample 36, patchy areas are extended at level 1 to in-
corporate more of the poor quality crop and the drainage features that separate parcels.
At level 2 the whole block of variable crop becomes a single polygon representing the
farmers intention to cultivate.

Original Level 1 Level 2

Polygons extended to
whole field

Simplification of complex edges

Un-cropped areas merged 
into parcels

Original Level 1 Level 2

0 50 100
m

0 50 100
m

¯

Figure 2: Example of level 1 and 2 edits to sample 39 (top) and 36 (bottom). Boundary delineations overlaid
on IKONOS (near-infrared false-colour) imagery. Samples centred on latitude 31.501∘N, longitude 64.187∘E
(39) and latitude 31.503∘N, longitude 64.081∘E (36).

A third sample set was created to simulate a methodology where images are automat-
ically segmented and the resulting parcels classified manually by image-interpretation.
Automated segmentation was performed for each IKONOS image used for interpretation
using eCognition® software. The software uses a bottom-up region merging technique to
group homogeneous pixels into objects of similar size and scale based on a scaling fac-
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tor (Benz et al., 2004). A scaling factor of 80 was determined by systematic testing and
found to be suitable for the segmentation of opium and cereal parcels from the 1 m res-
olution IKONOS images. A single level segmentation was then run on each image using
the same scaling factor and homogeneity criteria of 0.1 for shape factor and 0.5 for com-
pactness (Baatz et al., 2004). Segmented polygons were then intersected with the original
2009 samples and their classes assigned by selecting the majority class from the original
interpretation for each polygon.

The final sample set was created by conducting an object based nearest neighbour
classification within the software for the segmented polygons in each IKONOS scene. The
classifier was trained using fields of poppy and cereal selected in areas away from the
sample squares. Classified samples were then extracted at coincident locations to the 2009
sample. A small number of anomalies were found in the samples caused by unclassified
areas in the object classification. These areas were masked out of all 5 sample sets.

Each of the 61 samples in each set were rasterised at a grid resolution of 1 m to match
the format of the original 2009 samples. The different levels of generalisation and auto-
matic methods were then compared by running 5 separate stratified area frame sampling
analyses to estimate the total area of poppy using the same 30 spectral strata.

3 Results

Table 2 shows the poppy area estimates for the 5 interpretation methods. The estimates
range from 39 534 to 51 463 ha and have a similar lower (about 8%) and upper (about 10%)
confidence interval (90%). Generalisation of interpretation increases the poppy estimate
by 6.6% for level 1 and by 13.9% for level 2. The increase in the poppy estimate for the
level 2 interpretations is greater than the upper confidence interval using the original sam-
ple (10.4%). Automatic segmentation of the field parcels with manual class assignment
increased the estimate by 2.4%, the smallest difference of all methods from the original
sample estimate. The object classification increases the estimate by 30.2% from the origi-
nal estimate.

Table 2: Poppy area estimates and 90% confidence intervals for different levels of generalisation and auto-
matic segmentation using 61 samples in the Helmand trial area, with percentage difference from the original
(* outside confidence interval).

Method Area (ha) Upper (%) Lower (%) Diff. (%)

Original 39 534 8.5 10.4
Level1 42 145 8.1 10.5 6.6
Level2 45 031 8.3 10.6 *13.9
Segments manual 40 488 8.4 11.0 2.4
Segments trained 51 463 7.4 9.0 *30.2

Figure 3 shows the individual poppy proportions for each interpretation method plot-
ted against the original samples. For the level 1 and level 2 (figure 3(a) and 3(b)) the gen-
eralisation in the interpretation creates a positive bias in sample proportion that increases
with the proportion of poppy in the sample. In figure 3(c), the proportion of poppy in
automatically segmented samples is similar to the original interpretation proportions.
The object based classification of the samples (figure 3(d)) shows a positive bias towards
poppy and a reduction in the coefficient of determination (𝑅2) to 0.84 from >0.99 for the
other methods.

Figure 4 shows a visual comparison of part of sample 67 for the different automatic
methods with manual interpretation. The results of the segmentation overlaid on the
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Figure 3: Linear regression of (a) level 1 and (b) level 2 generalisations, (c) manually assigned and (d) digitally
classified segments (seg.) with original poppy proportions for all 61 samples.

IKONOS image (figure 4(a)) show accurate delineation of field parcels, within-field bare
patches and tree-lined boundaries between parcels. These objects match the general shape
of manually interpreted field parcels (figure 4(b)) and the manual classification of the
objects (figure 4(c)) shows good agreement with the original interpretation. However,
differences can be seen in the complexity of the parcel edges and in cases where single
objects from the segmentation are split in the image-interpretation. Heterogeneous areas
in the imagery, where multiple linear features intersect with small parcels, are incorrectly
labelled as the segmented objects cover multiple classes.

In the object-classified sample (figure 4(c)) there are errors in the classification of field
parcels and boundary features. A confusion matrix of the classified and original image-
interpreted samples is shown in table 3. Assuming the visual interpretation as the ref-
erence data, the user accuracy of the object classification of poppy is 59% with a higher
commission error compared to the omission error. This shows a bias towards the classi-
fication of poppy that increases the overall estimate.
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Object boundaries

(a) Segmentation boundaries

Cereal Other Poppy

(b) Original interpretation

Single object representing
two parcels

Complex polygon 
boundaries

Cereal Other Poppy

Heterogeneous 
areas

(c) Manually assigned object classes

Incorrectly classified 
objects

Complex areas poorly 
classified

Misclassified boundary
features

Cereal Other Poppy

(d) Object classification

Figure 4: Example of manual interpretation and classification of automatically segmented field parcels from
pan-sharpened IKONOS imagery.

4 Discussion

We have tested the two sources of sample interpretation error that could bias the final area
estimate. They are the delineation of the parcel boundaries and the misclassification of
crop types within parcels (labelling error). As expected, the results show a positive bias
in the sample estimate from generalising the sample interpretations. What is significant
is the magnitude of the bias: for the higher level of generalisation it is greater than the
sample error estimated from the bootstrap (13.9% vs 10.6%).

There are several factors in manual image-interpretation that can lead to the levels
of generalisation investigated. The first is a tendency for interpreters to digitise fewer
vertices in parcel boundaries to speed up the interpretation of individual samples. This
is particularly the case when delineating large blocks of contiguous fields that contain
the same crop type. Within-field features such as irrigation ditches and linear features
between fields are more likely to be included within parcel boundaries to improve the
interpreters’ productivity.
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Table 3: Confusion matrix of 61 object classified and image-interpreted samples (as proportions), rasterised
to 1 m.

Object classification

Poppy Other Cereal Total Producer

Original Poppy 0.13 0.03 0.01 0.17 0.76
interpretation Other 0.05 0.49 0.02 0.56 0.88

Cereal 0.04 0.04 0.19 0.27 0.7
Total 0.22 0.55 0.23 1

User 0.59 0.89 0.83

Overall agreement 0.81

The second factor is the definition of a field parcel in the interpretation key. If the
interpreter is tasked with identifying the farmers’ intention to cultivate a certain crop,
the field delineation will include within-field bare patches and poor crops by design. In
crops with a uniform canopy this approach will produce similar results to interpretations
delineating the actual visible crop area. However, in areas of marginal agriculture or in
years with poor crop establishment this will greatly affect the proportions of the target
crop within samples and the resulting area estimates.

The third factor is the scale of digitised crop areas and is related to the resolution of
imagery. Interpreters using aerial digital photography could be able to accurately delin-
eate areas of thin crops and within-field features that are not visible in lower resolution
satellite imagery. In marginal areas or in crops with poor establishment this will create
systematic differences in interpretation related to the appearance of thin parcels of poppy
and the size of within-field features in the imagery. If the area of these small features
makes a significant contribution to the cropped area of poppy the sample interpretations
will become unreliable.

Finally appearance of crops in imagery changes according to their growth stage. Er-
rors could be introduced by interpretation of underdeveloped crop canopies from images
collected early in the growing season. In the example from 2008 shown in figure 5, back-
ground soil is visible through the canopy within poppy fields on 28 March (figure 5(a))
that is subsequently covered by the time of the second image on 27 April (figure 5(b)). The
early interpretation (yellow lines) excludes parts of the field at the earlier date that are
included in the later interpretation. In 2008, poor crop establishment due to cold spring
weather caused visible differences in the crop canopy at the stem elongation growth stage.
In a normal year the canopy would be expected to be fully developed at this growth stage
and within canopy bare patches digitised out during interpretation as being un-cropped.
Figure 6 shows another area from Helmand Province in 2008 where the early damage to
the crop has resulted in bare patches (figure 6(a)) that are still visible in the later image
(figure 6(b)). Inclusion of these areas within the samples will lead to an over estimation
of the cropped area of poppy.

The effect of these factors will vary between groups of interpreters according to their
specific training, the interpretation key and the imagery source; and also between inter-
preters within the same group. Methods to maintain accuracy and consistency across
samples are standard practice for surveys that rely on image-interpretation and include
comparisons of sample interpretations between individuals; review of samples by more
experienced interpreters; and multiple-pairs-of-eyes, where teams of interpreters con-
sider marginal cases together.

Controls to limit the level of generalisation require more resources as the area of the
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(a) 28 March 2008

(b) 27 April 2008

Figure 5: True-colour and false-colour subsets of pan-sharpened IKONOS images for two dates showing area
of poppy cultivation in Helmand Province with poor crop establishment. Poppy fields delineated in yellow,
subsets centred at latitude 31.687∘N, longitude 64.284∘E.

sample increases. Smaller samples allow for shorter, more focused analysis and are easier
to cross reference to maintain consistency between individual interpreters. Conversely,
large samples (e.g. an entire VHR image) that include hundreds of fields are more likely to
contain field boundary generalisations and omissions of within-field features, especially
in areas dominated by the crop of interest. They are also more difficult to quality check
and cross reference. The effect of interpreter generalisation is compounded in larger sam-
ples with poor crop establishment; where accurate digitisation of complex field parcels is
a significant increase in the work load of the interpreter.

Segmentation and object classification were investigated for potential improvements
to the consistency and speed of sample interpretation. Image segmentation produced
similar results to the manual delineation of field parcels by interpreters. In the case of
eCognition, the manual steps of the segmentation are limited to the selection of suitable
homogeneity criteria, which were found to be constant across image scenes in this study.
Once this is done whole images can be segmented in minutes and the work of the inter-
preter is focused on the labelling of field parcels with some minor editing of boundary
errors in complex areas. This speeds up interpretation and prevents generalisation that
might arise from interpretation of contiguous blocks of the same crop and complex field
boundaries. Further research into optimising the segmentation of poppy crops and the
effect of growth stage and image resolution on the accuracy of segmented field parcels is
necessary to support its use in operational surveys.

Totally automatic methods limit the effort of image-interpretation to a subset of rep-
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(a) 27 March 2008

(b) 27 April 2008

Figure 6: True-colour and false-colour subsets of pan-sharpened IKONOS images for two dates showing area
of poppy crops damaged by cold weather that did not recover, Helmand Province. Poppy fields delineated
in yellow, subsets centred at latitude 31.739∘N, longitude 64.332∘E.

resentative fields for training and evaluating the classifier. The object classification was
found to be unsuitable for automatic interpretation as the systematic error in the classified
samples biases the final cultivation figure (30.4% increase in poppy area for this study).
These results highlight the importance of systematic bias correction for obtaining accu-
rate area estimates from image classifications, as discussed for pixel based classifiers by
Gallego (2004).

Provided the quality of interpretation can be controlled, survey interpretations can be
consistent within survey teams across growing seasons for comparisons of inter-annual
estimates. However, differences in interpretation keys – relating to the imagery and the
definition of the interpretation classes – are likely to be a source of disagreement between
estimates from independent surveys. Within the context of the annual opium surveys in
Afghanistan, consistency between the UNODC and US estimates was greatly improved
from 2005 through sharing of interpretations at overlapping sample sites (Taylor et al.,
2010). Differences in crop classification were reconciled and systematic differences in the
interpretation approach were identified, leading to harmonisation of cultivation estimates
without affecting the independence of the surveys.

5 Conclusions

Generalisation in sample interpretation results in systematic differences in final estimates
of poppy that are not accounted for in the confidence interval of the final estimate. Es-
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timates were 6.6% and 13.9% higher for generalised samples, which is greater than the
confidence interval for the higher level of generalisation. These results show that dis-
agreement in annual estimates between Afghanistan’s monitoring programmes can result
from systematic differences in class definitions and interpretation keys for poppy.

Image segmentation produced similar parcel boundaries to manual digitising. The
manual labelling of image segments shows potential for increasing the speed of inter-
pretation while maintaining a consistent delineation of field parcels. Further research is
required to optimise the segmentation of images collected at different crop growth stages
and to investigate the effect of VHR image resolution before operational use. Object based
classification of VHR imagery was found to be unsuitable for samples production because
of low labelling accuracy.

This work highlights the requirement for controls to maintain the consistency of inter-
pretation. Suitable class definitions and keys relating to the features visible in VHR im-
agery are essential to reduce differences between individuals and teams of interpreters.
We recommended splitting larger samples to allow for shorter, more focused analysis and
improved quality control.

The results are significant for surveys that use visual interpretation of remotely sensed
data. Imagery must be of the appropriate resolution and class definitions applicable to
observable differences in the imagery to capture a true representation of reality and avoid
bias.
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