3,869 research outputs found

    Nickel catalyzed one pot synthesis of biaryls under air at room temperature

    Get PDF
    A practical, room temperature catalytic system has been developed for the synthesis of biaryls in one step from the homocoupling of in situ generated Grignard reagents using the nickel(II) complex. Molecular oxygen used as an oxidant makes the system environment friendly. The reaction system is compatible with diverse functionality to afford biaryls in appreciable yields

    Substituted BEDT-TTF derivatives: synthesis, chirality, properties and potential applications

    Get PDF
    The increasing availability of functionalized BEDT-TTF derivatives in both racemic and enantiopure forms opens up great opportunities for preparing multifunctional materials and chiral conducting systems in the form of crystals, thin films and polymers. Functionalities such as amino and carboxyl will allow attachment to other molecular systems, while intermolecular interactions between substituents, e.g. hydrogen bonding and halegon- - - halegon interactions, provides additional tools for designing solid state radical cation structures. In this review the syntheses of substituted derivatives of BEDT-TTF and closely related donors are surveyed, along with the structures and properties of the radical cation salts so far prepared, as a stimulus for future application of these versatile and attractive molecules. Particular attention is paid to the preparation of single enantiomers, and to the stereochemical consequences of the synthetic procedures

    Z-Selective Homodimerization of Terminal Olefins with a Ruthenium Metathesis Catalyst

    Get PDF
    The cross-metathesis of terminal olefins using a novel ruthenium catalyst results in excellent selectivity for the Z-olefin homodimer. The reaction was found to tolerate a large number of functional groups, solvents, and temperatures while maintaining excellent Z-selectivity, even at high reaction conversions

    Halide-enhanced catalytic activity of palladium nanoparticles comes at the expense of catalyst recovery

    Get PDF
    In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr) can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature

    An alternative method to access diverse N,N′-diquaternised-3,3′-biquinoxalinium “biquinoxen” dications

    Get PDF
    An alternative synthetic route for the design of N,N′-diquaternised-3,3′-biquinoxalinium “biquinoxen” dications is reported, involving oxidative radical coupling of dithionite reduced quinoxaline quaternary salts. Although the reaction is not regioselective, leading to relatively modest yields (up to 32%), the advantages of this new synthetic protocol lie in a simple potentially gram scale synthesis using inexpensive easily accessible reagents with no metal catalysts and no purification steps. Thus whereas the method reported previously to access the N,N′-dimethyl-3,3′-biquinoxalinium, “methylbiquinoxen” precursor gave higher yield than the new method reported here, this new method avoids the limitation of using scarce oxonium reagents. Overall, the new protocol is a robust synthetic strategy which offers new design possibilities

    Synthesis of highly substituted alkenes by sulfur-mediated olefination of N-tosylhydrazones

    Get PDF
    Tetraphenylethylenes (TPEs) are well-known for their aggregation-induced emission properties. The synthesis of TPE derivatives, as well as other highly substituted olefins, generally requires the use of hazardous reagents, such as metalorganic compounds, to overcome the high activation energies caused by the sterically congested double bond. Herein, we present an efficient and metal-free procedure for the synthesis of tetraarylethylenes via alkylidene-homocoupling of N-tosylhydrazones, derived from readily available benzophenones, in excellent yields. The method relies only on cheap and benign additives, i.e. elemental sulfur and potassium carbonate, and easily competes with other established procedures in terms of scope, yield and practicability. A mechanistic study revealed a diazo compound, a thioketone and a thiirane as key intermediates in the pathway of the reaction. Based on this, a modified method, which allows for selective alkylidene-cross-coupling, generating a broader scope of tri- and tetrasubstituted olefins in good yields, is showcased as well

    Supported Au nanoparticles as efficient catalysts for aerobic homocoupling of phenylboronic acid

    No full text
    Au nanoparticles with small sizes (1–4 nm) were effectively formed on Mg–Al mixed oxides (Au/MAO), which showed superior catalytic performances and good recyclability in aerobic homocoupling of phenylboronic acid

    Systematic Incorporation of Gold Nanoparticles onto Mesoporous Titanium Oxide Particles for Green Catalysts

    Get PDF
    This report describes the systematic incorporation of gold nanoparticles (AuNPs) onto mesoporous TiO2 (MPT) particles without strong attractive forces to efficiently serve as reactive and recyclable catalysts in the homocoupling of arylboronic acid in green reaction conditions. Unlike using nonporous TiO2 particles and conventional SiO2 particles as supporting materials, the employment of MPT particles significantly improves the loading efficiency of AuNPs. The incorporated AuNPs are less than 10 nm in diameter, regardless of the amount of applied gold ions, and their surfaces, free from any modifiers, act as highly reactive catalytic sites to notably improve the yields in the homocoupling reaction. The overall physical properties of the AuNPs integrated onto the MPT particles are thoroughly examined as functions of the gold content, and their catalytic functions, including the rate of reaction, activation energy, and recyclability, are also evaluated. While the rate of reaction slightly increases with the improved loading efficiency of AuNPs, the apparent activation energies do not clearly show any correlation with the size or distribution of the AuNPs under our reaction conditions. Understanding the formation of these types of composite particles and their catalytic functions could lead to the development of highly practical, quasi-homogeneous catalysts in environmentally friendly reaction conditions

    Structural and synthetic insights on oxidative homocouplings of alkynes mediated by alkali-metal manganates

    Get PDF
    Exploiting bimetallic cooperation alkali-metal manganate (II) complexes can efficiently promote oxidative homocoupling of terminal alkynes furnishing an array of conjugated 1,3-diynes. The influence of the alkali-metal on these C−C bond forming processes has been studied by preparing and structurally characterizing the alkali-metal tetra(alkyl) manganates [(TMEDA)2Na2Mn(CH2SiMe3)4] and [(PMDETA)2K2Mn(CH2SiMe3)4]. Reactivity studies using phenylacetylene as a model substrate have revealed that for the homocoupling to take place initial metalation of the alkyne is required. In this regard, the lack of basicity of neutral Mn(CH2SiMe3)2 precludes the formation of the diyne. Contrastingly, the tetra(alkyl) alkali-metal manganates behave as polybasic reagents, being able to easily deprotonate phenylacetylene yielding [{(THF)4Na2Mn(C≡CPh)4}∞] and [(THF)4Li2Mn(C≡CPh)4]. Controlled exposure of [{(THF)4Na2Mn(C≡CPh)4}∞] and [(THF)4Li2Mn(C≡CPh)4] to dry air confirmed their intermediary in formation of 1,4-diphenyl-1,3-butadiyne in excellent yields. While the Na/Mn(II) partnership proved to be the most efficient in stoichiometric transformations, under catalytic regimes, the combination of MC≡CAr (M= Li, Na) and MnCl2 (6 mol %) only works for lithium, most likely due to the degradation of alkynylsodiums under the aerobic reaction conditions.</p
    • …
    corecore