221,558 research outputs found

    Peeling and Sliding in Nucleosome Repositioning

    Full text link
    We investigate the mechanisms of histone sliding and detachment with a stochastic model that couples thermally-induced, passive histone sliding with active motor-driven histone unwrapping. Analysis of a passive loop or twist defect-mediated histone sliding mechanism shows that diffusional sliding is enhanced as larger portions of the DNA is peeled off the histone. The mean times to histone detachment and the mean distance traveled by the motor complex prior to histone detachment are computed as functions of the intrinsic speed of the motor. Fast motors preferentially induce detachment over sliding. However, for a fixed motor speed, increasing the histone-DNA affinity (and thereby decreasing the passive sliding rate) increases the mean distance traveled by the motor.Comment: 5 pp, 4 fig

    Displacement of Histones at Promoters of \u3ci\u3eSaccharomyces cerevisiae\u3c/i\u3e Heat Shock Genes Is Differentially Associated with Histone H3 Acetylation

    Get PDF
    Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate that histone H3 acetylation associated with histone displacement differs drastically even between promoters of such closely related heat shock genes as HSP12, SSA4, and HSP82. The HSP12 promoter, with the highest level of histone displacement, showed the highest level of H3 acetylation, while the SSA4 promoter, with a lower histone displacement, showed only modest H3 acetylation. Moreover, for the HSP12 promoter, the level of acetylated H3 is temporarily increased prior to nucleosome departure. Individual promoters in strains expressing truncated versions of heat shock factor (HSF) showed that deletion of either one of two activating regions in HSF led to the diminished histone displacement and correspondingly lower H3 acetylation. The deletion of both regions simultaneously severely decreased histone displacement for all promoters tested, showing the dependence of these processes on HSF. The level of histone H3 acetylation at individual promoters in strains expressing truncated HSF also correlated with the extent of histone displacement. The beginning of chromatin remodeling coincides with the polymerase II loading on heat shock gene promoters and is regulated either by HSF binding or activation of preloaded HSF

    The Histone Deacetylase Complex (HDC) 1 protein of Arabidopsis thaliana has the capacity to interact with multiple proteins including histone 3-binding proteins and histone 1 variants

    Get PDF
    Intrinsically disordered proteins can adopt multiple conformations thereby enabling interaction with a wide variety of partners. They often serve as hubs in protein interaction networks. We have previously shown that the Histone Deacetylase Complex (HDC) 1 protein from Arabidopsis thaliana interacts with histone deacetylases and quantitatively determines histone acetylation levels, transcriptional activity and several phenotypes, including ABA-sensitivity during germination, vegetative growth rate and flowering time. HDC1-type proteins are ubiquitous in plants but they contain no known structural or functional domains. Here we explored the protein interaction spectrum of HDC1. In addition to binding histone deacetylases, HDC1 directly interacted with core histone H3-binding proteins and co-repressor associated proteins, but not with H3 or the co-repressors themselves. Surprisingly, HDC1 was also able to interact with variants of the linker histone H1. Truncation of HDC1 to the ancestral core sequence narrowed the spectrum of interactions and of phenotypic outputs but maintained binding to a H3-binding protein and to H1. The results indicate a potential link between H1 and histone modifying complexes

    The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation

    Get PDF
    Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly

    A length-dynamic Tonks gas theory of histone isotherms

    Full text link
    We find exact solutions to a new one-dimensional (1D) interacting particle theory and apply the results to the adsorption and wrapping of polymers (such as DNA) around protein particles (such as histones). Each adsorbed protein is represented by a Tonks gas particle. The length of each particle is a degree of freedom that represents the degree of DNA wrapping around each histone. Thermodynamic quantities are computed as functions of wrapping energy, adsorbed histone density, and bulk histone concentration (or chemical potential); their experimental signatures are also discussed. Histone density is found to undergo a two-stage adsorption process as a function of chemical potential, while the mean coverage by high affinity proteins exhibits a maximum as a function of the chemical potential. However, {\it fluctuations} in the coverage are concurrently maximal. Histone-histone correlation functions are also computed and exhibit rich two length scale behavior.Comment: 5 pp, 3 fig

    Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Get PDF
    Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development

    The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution

    Get PDF
    NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron–electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a ‘self-chaperoning’ type mechanism

    Reciprocal intronic and exonic histone modification regions in humans.

    Get PDF
    While much attention has been focused on chromatin at promoters and exons, human genes are mostly composed of intronic sequences. Analyzing published surveys of nucleosomes and 41 chromatin marks in humans, we identified histone modifications specifically associated with 5' intronic sequences, distinguishable from promoter marks and bulk nucleosomes. These intronic marks were spatially reciprocal to trimethylated histone H3 Lys36 (H3K36me3), typically transitioning near internal exons. Several marks transitioned near bona fide exons, but not near nucleosomes at exon-like sequences. Therefore, we examined whether splicing affects histone marking. Even with considerable changes in regulated alternative splicing, histone marks were stable. Notably, these findings are consistent with exon definition influencing histone marks. In summary, we show that the location of many intragenic marks in humans can be distilled into a simple organizing principle: association with 5' intronic or 3' exonic regions

    Nickel binding sites in histone proteins

    Get PDF
    Nickel compounds are well known as human carcinogens, though the molecular events that are responsible for this are not well understood. It has been proposed that a crucial element in the mechanism of carcinogenesis is the binding of Ni(II) ions within the cell nucleus. It is known that DNA polymer binds Ni(II) only weakly, leaving the proteins of the cell nucleus as the likely Ni(II) targets. Being histone proteins the most abundant among them, they can be considered the primary sites for nickel binding. Here we describe the interactions of nickel with histone H4, core tetramer (H3-H4)2 and several peptide fragments which have been selected as the candidates for specific binding sites in the histone octamer. The results allowed us to propose several mechanisms of nickel induced damage resulting from metal coordination, including structural changes of histone proteins, as well as nucleobase oxidation and sequence-specific histone hydrolysis. The aim of the present work is to provide a comprehensive overview of literature dealing with nickel coordination to histone proteins and its link with nickel involvement in toxicity and carcinogenicity
    • …
    corecore