137,425 research outputs found

    Development of heat flux sensors in turbine airfoils

    Get PDF
    The objective is to develop heat flux sensors suitable for use on turbine airfoils and to verify the operation of the heat flux measurement techniques through laboratory experiments. The requirements for a program to investigate the measurement of heat flux on airfoils in areas of strong non-one-dimensional flow were also identified

    How large are present-day heat flux variations across the surface of Mars?

    Get PDF
    ©2016. American Geophysical UnionThe first in situ Martian heat flux measurement to be carried out by the InSight Discovery‐class mission will provide an important baseline to constrain the present‐day heat budget of the planet and, in turn, the thermochemical evolution of its interior. In this study, we estimate the magnitude of surface heat flux heterogeneities in order to assess how the heat flux at the InSight landing site relates to the average heat flux of Mars. To this end, we model the thermal evolution of Mars in a 3‐D spherical geometry and investigate the resulting surface spatial variations of heat flux at the present day. Our models assume a fixed crust with a variable thickness as inferred from gravity and topography data and with radiogenic heat sources as obtained from gamma ray measurements of the surface. We test several mantle parameters and show that the present‐day surface heat flux pattern is dominated by the imposed crustal structure. The largest surface heat flux peak‐to peak variations lie between 17.2 and 49.9 mW m−2, with the highest values being associated with the occurrence of prominent mantle plumes. However, strong spatial variations introduced by such plumes remain narrowly confined to a few geographical regions and are unlikely to bias the InSight heat flux measurement. We estimated that the average surface heat flux varies between 23.2 and 27.3 mW m−2, while at the InSight location it lies between 18.8 and 24.2 mW m−2. In most models, elastic lithosphere thickness values exceed 250 km at the north pole, while the south pole values lie well above 110 km

    Heat flux sensor assembly

    Get PDF
    Heat flux sensor assembly with proviso for heat shield to reduce radiative transfer between sensor element

    Heat flux measuring system Patent

    Get PDF
    Heat flux sensor adapted for mounting on aircraft or spacecraft to measure aerodynamic heat flux inflow to aircraft ski

    Measurement of local high-level, transient surface heat flux

    Get PDF
    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators

    Heat flux measurements

    Get PDF
    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients

    Inflation driven by causal heat flux

    Get PDF
    We find a simple inflationary solution in an inhomogeneous spacetime with heat flux. The heat flux obeys a causal transport equation, and counteracts the inflationary decrease of energy density. At late times, the heat flux tends to zero and the fluid approaches the equation of state p=ρp=-\rho.Comment: Latex 5 pages; to appear Gen. Rel. Gra

    Research On Maximizing Critical And Reducing Initial Heat Flux Densities To Eliminate Any Film Boiling And Minimize Distortion During Quenching

    Get PDF
    In the paper the results of testing three types of FUCHS oils: Thermisol QH 120, Thermisol QH 10 and Thermisol QB 46 are discussed. The main attention is paid to critical heat flux densities evaluation because they create a basis for optimizing cooling intensity of any liquid quenchant. In the paper is underlined that any film boiling during quenching is undesirable since it is a reason for big distortion and non-uniform surface harness. It is shown that intensive quenching decreases distortion of steel parts during quenching. To eliminate film boiling during quenching in mineral oils, optimal temperature of oil should be chosen which maximize the first critical heat flux density and special additives should be used to decrease initial heat flux by creating surface micro-coating. Along with the evaluation of heat transfer coefficients, critical heat flux densities inherent to liquid quenchant must be measured first to optimize quenching processes. International DATABASE on cooling characteristics of liquid quenchants must include critical heat flux densities, initial heat flux densities, and heat transfer coefficients allowing optimizing and governing quenching processes

    Analytical modeling for the heat transfer in sheared flows of nanofluids

    Get PDF
    We developed a model for the enhancement of the heat flux by spherical and elongated nano- particles in sheared laminar flows of nano-fluids. Besides the heat flux carried by the nanoparticles the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect, it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnet limit for the spherical nanoparticles. The road ahead which should lead towards robust predictive models of heat flux enhancement is discussed.Comment: 14 pages, 10 figures, submitted to PR
    corecore