15,935 research outputs found

    Experimental Study of the Intrinsic and Extrinsic Transport Properties of Graphite and Multigraphene Samples

    Get PDF
    This work deals with the intrinsic and extrinsic properties of the graphene layers inside the graphite structure, in particular the influence of defects and interfaces. We discuss the evidence for ballistic transport found in mesoscopic graphite samples and the possibility to obtain the intrinsic carrier density of graphite, without the need of free parameters or arbitrary assumptions. The influence of internal interfaces on the transport properties of bulk graphite is described in detail. We show that in specially prepared multigraphene samples the transport properties show clear signs for the existence of granular superconductivity within the graphite interfaces. We argue that the superconducting-insulator or metal-insulator transition (MIT) reported in the literature for bulk graphite is not intrinsic of the graphite structure but it is due to the influence of these interfaces. Current-Voltage characteristics curves reveal Josephson-like behavior at the interfaces with superconducting critical temperatures above 150K.Comment: 26 pages, 15 figures. To be published in "Graphene, Book 2" by Intech, Open Access Publisher 2011, ISBN: 979-953-307-180-

    Identification of a possible superconducting transition above room temperature in natural graphite crystals

    Get PDF
    Measuring with high precision the electrical resistance of highly ordered natural graphite samples from a Brazil mine, we have identified a transition at ∼\sim350~K with ∼\sim40~K transition width. The step-like change in temperature of the resistance, its magnetic irreversibility and time dependence after a field change, consistent with trapped flux and flux creep, and the partial magnetic flux expulsion obtained by magnetization measurements, suggest the existence of granular superconductivity below 350~K. The zero-field virgin state can only be reached again after zero field cooling the sample from above the transition. Paradoxically, the extraordinarily high transition temperature we found for this and several other graphite samples is the reason why this transition remained undetected so far. The existence of well ordered rhombohedral graphite phase in all measured samples has been proved by x-rays diffraction measurements, suggesting its interfaces with the Bernal phase as a possible origin for the high-temperature superconductivity, as theoretical studies predicted. The localization of granular superconductivity at these two dimensional interfaces prevents the observation of a zero resistance state or of a full Meissner state.Comment: 14 pages with 21 figure

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    Interface driven magnetoelectric effects in granular CrO2

    Full text link
    Antiferromagnetic and magnetoelectric Cr2O3-surfaces strongly affect the electronic properties in half metallic CrO2. We show the presence of a Cr2O3 surface layer on CrO3 grains by high-resolution transmission electron microscopy. The effect of these surface layers is demonstrated by measurements of the temperature variation of the magnetoelectric susceptibility. A major observation is a sign change at about 100 K followed by a monotonic rise as a function of temperature. These electric field induced moments in CrO3 are correlated with the magnetoelectric susceptibility of pure Cr2O3. This study indicates that it is important to take into account the magnetoelectric character of thin surface layers of Cr2O3 in granular CrO2 for better understanding the transport mechanism in this system. The observation of a finite magnetoelectric susceptibility near room temperature may find utility in device applications.Comment: Figure 1 with strongly reduced resolutio
    • …
    corecore