8 research outputs found

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    Relationship between reproductive hormones and migration distance in a polygynous songbird, the Red‑winged Blackbird (\u3ci\u3eAgelaius phoeniceus\u3c/i\u3e)

    Get PDF
    Many bird species migrate to southern overwintering locations to avoid harsh conditions at their breeding grounds, but at the cost of an energetically demanding migration that may delay their spring reproductive development. Previous work on the relationship between migration distance and reproductive readiness has primarily focused on early season baseline testosterone in both males and females. However, for females, testosterone alone may not be the appropriate measurement of reproductive development. Estradiol, a metabolite of testosterone that is essential for breeding behaviors and reproduction, should also be measured. Furthermore, baseline testosterone varies throughout the day and may change due to social interactions that occurred prior to sampling. Injection of gonadotropin-releasing hormone (GnRH) elicits an individual’s maximum potential testosterone production, minimizing daily and social variation. We explored relationships between migration distance and reproductive status after arrival to the breeding ground in Red-winged Blackbirds (Agelaius phoeniceus). We predicted that individuals that travel a shorter distance will have higher levels of reproductive hormones upon arrival given they are able to invest less in migration and more in reproduction. This is important because individuals that breed earlier often have higher reproductive success. In females, we measured baseline estradiol and testosterone. In males, we assessed baseline and GnRH-induced testosterone. Hormone values were related to migration distance, estimated by stable isotope analysis of claw samples collected before breeding began in eastern North Dakota. We found that males with shorter inferred migration distances have higher baseline testosterone upon arrival. However, inferred migration distance was not correlated with GnRH-induced testosterone. Female inferred migration distance was not correlated with baseline testosterone, but it was correlated with baseline estradiol. Females with higher testosterone had lower estradiol, suggesting that testosterone in females is not a reliable indicator of estradiol levels, thus readiness to breed. Our observations suggest that baseline hormone levels were related to migration distance, but baseline testosterone alone may not provide a complete assessment of a male or female’s preparedness to breed following spring migration

    Resultaten van de boorgatmetingen en de pompproef bij 'Bilstrapack' Wetteren

    Get PDF

    Cultivating Community Interactions in Citizen Science: Connecting People to Each Other and the Environment

    Get PDF
    Citizen science leverages a distributed user-base which participates in crowd-sourced scientific inquiry. Geotagger is a citizen science project that allows people to collaboratively investigate the natural world around them and share their findings. Citizens are rarely compensated for their work and individual contributors can feel isolated which leads to motivation problems. This thesis focuses on engaging citizen scientists and motivating their contributions via social interaction and engagement. As a part of this work, a number of social enhancements have been developed as extensions to the existing Geotagger project. These enhancements and their effect on social engagement were evaluated using in-field studies and design investigations with children. In the studies, children engaged effectively with each other using the social enhancements in Geotagger, and showed a preference for the application that included these social enhancements

    Newfoundland Directory 1936

    Get PDF
    Newfoundland Directory 193

    Electromagnetic induction studies in the Italian Alps

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX84139 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Hydrology in Water Resources Management

    Get PDF
    This book is a collection of 12 papers describing the role of hydrology in water resources management. The papers can be divided s according to their area of focus as 1) modeling of hydrological processes, 2) use of modern techniques in hydrological analysis, 3) impact of human pressure and climate change on water resources, and 4) hydrometeorological extremes. Belonging to the first area is the presentation of a new Muskingum flood routing model, a new tool to perform frequency analysis of maximum precipitation of a specified duration via the so-named PMAXΤP model (Precipitation MAXimum Time (duration) Probability), modeling of interception processes, and using a rainfall-runoff GR2M model to calculate monthly runoff. For the second area, the groundwater potential was evaluated using a model of multi-influencing factors in which the parameters were optimized by using geoprocessing tools in geographical information system (GIS) in combination with satellite altimeter data and the reanalysis of hydrological data to simulate overflow transport using the Nordic Sea as an example. Presented for the third area are a water balance model for the comparison of water resources with the needs of water users, the idea of adaptive water management, impacts of climate change, and anthropogenic activities on the runoff in catchment located in the western Himalayas of Pakistan. The last area includes spatiotemporal analysis of rainfall variability with regard to drought hazard and use of the copula function to meteorologically analyze drought
    corecore