1,306 research outputs found

    Use of the q-Gaussian mutation in evolutionary algorithms

    Get PDF
    Copyright @ Springer-Verlag 2010.This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.This work was supported in part by FAPESP and CNPq in Brazil and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Self-adaptation of mutation distribution in evolution strategies for dynamic optimization problems

    Get PDF
    Copyright @ IOS Press. All Rights Reserved.Evolution strategies with q-Gaussian mutation, which allows the self-adaptation of the mutation distribution shape, is proposed for dynamic optimization problems in this paper. In the proposed method, a real parameter q, which allows to smoothly control the shape of the mutation distribution, is encoded in the chromosome of the individuals and is allowed to evolve. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on experiments generated from the simulation of evolutionary robots and on dynamic optimization problems generated by the Moving Peaks generator

    Evolution strategies with q-Gaussian mutation for dynamic optimization problems

    Get PDF
    This article is posted here with permmission from IEEE - Copyright @ 2010 IEEEEvolution strategies with q-Gaussian mutation, which allows the self-adaptation of the mutation distribution shape, is proposed for dynamic optimization problems in this paper. In the proposed method, a real parameter q, which allows to smoothly control the shape of the mutation distribution, is encoded in the chromosome of the individuals and is allowed to evolve. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on four experiments generated from the simulation of evolutionary robots.This work was supported by FAPESP, Brazil, and by the Engineering and Physical Sciences Research Council(EP/E060722/1), UK

    Evolutionary programming with q-Gaussian mutation for dynamic optimization problems

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe use of evolutionary programming algorithms with self-adaptation of the mutation distribution for dynamic optimization problems is investigated in this paper. In the proposed method, the q-Gaussian distribution is employed to generate new candidate solutions by mutation. A real parameter q, which defines the shape of the distribution, is encoded in the chromosome of individuals and is allowed to evolve. Algorithms with self-adapted mutation generated from isotropic and anisotropic distributions are presented. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on three dynamic optimization problems.This work was supported by Brazil FAPESP under Grant 04/04289-6 and UK EPSRC under Grant No. EP/E060722/01

    Self-adaptation of mutation distribution in evolutionary algorithms

    Get PDF
    This paper is posted here with permission from IEEE - Copyright @ 2007 IEEEThis paper proposes a self-adaptation method to control not only the mutation strength parameter, but also the mutation distribution for evolutionary algorithms. For this purpose, the isotropic g-Gaussian distribution is employed in the mutation operator. The g-Gaussian distribution allows to control the shape of the distribution by setting a real parameter g and can reproduce either finite second moment distributions or infinite second moment distributions. In the proposed method, the real parameter q of the g-Gaussian distribution is encoded in the chromosome of an individual and is allowed to evolve. An evolutionary programming algorithm with the proposed idea is presented. Experiments were carried out to study the performance of the proposed algorithm

    On Restricting Real-Valued Genotypes in Evolutionary Algorithms

    Full text link
    Real-valued genotypes together with the variation operators, mutation and crossover, constitute some of the fundamental building blocks of Evolutionary Algorithms. Real-valued genotypes are utilized in a broad range of contexts, from weights in Artificial Neural Networks to parameters in robot control systems. Shared between most uses of real-valued genomes is the need for limiting the range of individual parameters to allowable bounds. In this paper we will illustrate the challenge of limiting the parameters of real-valued genomes and analyse the most promising method to properly limit these values. We utilize both empirical as well as benchmark examples to demonstrate the utility of the proposed method and through a literature review show how the insight of this paper could impact other research within the field. The proposed method requires minimal intervention from Evolutionary Algorithm practitioners and behaves well under repeated application of variation operators, leading to better theoretical properties as well as significant differences in well-known benchmarks

    Negatively Correlated Search

    Full text link
    Evolutionary Algorithms (EAs) have been shown to be powerful tools for complex optimization problems, which are ubiquitous in both communication and big data analytics. This paper presents a new EA, namely Negatively Correlated Search (NCS), which maintains multiple individual search processes in parallel and models the search behaviors of individual search processes as probability distributions. NCS explicitly promotes negatively correlated search behaviors by encouraging differences among the probability distributions (search behaviors). By this means, individual search processes share information and cooperate with each other to search diverse regions of a search space, which makes NCS a promising method for non-convex optimization. The cooperation scheme of NCS could also be regarded as a novel diversity preservation scheme that, different from other existing schemes, directly promotes diversity at the level of search behaviors rather than merely trying to maintain diversity among candidate solutions. Empirical studies showed that NCS is competitive to well-established search methods in the sense that NCS achieved the best overall performance on 20 multimodal (non-convex) continuous optimization problems. The advantages of NCS over state-of-the-art approaches are also demonstrated with a case study on the synthesis of unequally spaced linear antenna arrays

    A directed mutation operator for real coded genetic algorithms

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2010.Developing directed mutation methods has been an interesting research topic to improve the performance of genetic algorithms (GAs) for function optimization. This paper introduces a directed mutation (DM) operator for GAs to explore promising areas in the search space. In this DM method, the statistics information regarding the fitness and distribution of individuals over intervals of each dimension is calculated according to the current population and is used to guide the mutation of an individual toward the neighboring interval that has the best statistics result in each dimension. Experiments are carried out to compare the proposed DM technique with an existing directed variation on a set of benchmark test problems. The experimental results show that the proposed DM operator achieves a better performance than the directed variation on most test problems
    corecore