283 research outputs found

    A fuzzy Bayesian network approach for risk analysis in process industries

    Get PDF
    YesFault tree analysis is a widely used method of risk assessment in process industries. However, the classical fault tree approach has its own limitations such as the inability to deal with uncertain failure data and to consider statistical dependence among the failure events. In this paper, we propose a comprehensive framework for the risk assessment in process industries under the conditions of uncertainty and statistical dependency of events. The proposed approach makes the use of expert knowledge and fuzzy set theory for handling the uncertainty in the failure data and employs the Bayesian network modeling for capturing dependency among the events and for a robust probabilistic reasoning in the conditions of uncertainty. The effectiveness of the approach was demonstrated by performing risk assessment in an ethylene transportation line unit in an ethylene oxide (EO) production plant

    Fuzzy-Bayesian-network-based Safety Risk Analysis in Railway Passenger Transport

    Get PDF
    This study presents a fuzzy Bayesian network (FBN) method to analyze the influence on the safety risk of railway passenger transport applying different risk control strategies. Based on the fuzzy probability of the basic event determined by the expert group decision method, the proposed FBN method can reasonably predict the probability of railway passenger safety risk. It is also proven that control the risk in the safety management of railway passenger transport will be the most effective way to reduce the risk probability of the railway passenger transport safety

    A Fuzzy Bayesian Network Model for Quality Control in O2O e-Commerce

    Get PDF
    With the popularization of the online to offline (O2O) e-commerce on fresh food products, how to control the quality is becoming increasingly important. To adequately address this problem, this paper presents a fuzzy Bayesian network model for effectively controlling the quality in O2O ecommerce. Reasoning about uncertain events and incomplete data through an intelligent simulation with Bayesian networks provides a convenient and fast method of evaluation and analysis for e-commerce platforms to quickly select fresh food suppliers. Such a model is capable of appropriately modelling the uncertainty inherent in the fresh food product distribution process. It focuses on the identification of the critical factors that affect the food product quality along the supply chain. This leads to the development of a complete selection and evaluation system for the quality in O2O e-commerce. A simulation study is conducted that shows the proposed model is applicable for effectively controlling the quality in O2O e-commerce. Ultimately, the unloading level, warehouse inspection and warehouse monitoring are determined as the entry points for quality control, with corresponding degrees of influence of 44%, 37%, and 34%. The main points to protect the quality of food are introduced, which provides a theoretical basis for solving fresh food safety problems for business platforms

    Project portfolio resource risk assessment considering project interdependency by the fuzzy Bayesian network

    Get PDF
    Resource risk caused by specific resource sharing or competition among projects due to resource constraints is a major issue in project portfolio management, which challenges the application of risk analysis methods effectively. This paper presents a methodology by using a fuzzy Bayesian network to assess the project portfolio resource risk, determine critical resource risk factors, and propose risk-reduction strategies. In this method, the project portfolio resource risk factors are first identified by taking project interdependency into consideration, and then the Bayesian network model is developed to analyze the risk level of the identified risk factors in which expert judgments and fuzzy set theory are integrated to determine the probabilities of all risk factors to deal with incomplete risk data and information. To reduce the subjectivity of expert judgments, the expert weights are determined by combining experts’ background and reliability degree of expert judgments. A numerical analysis is used to demonstrate the application of the proposed methodology. The results show that project portfolio resource risks can be analyzed effectively and efficiently. Furthermore, “poor communication and cooperation among projects,” “capital difficulty,” and “lack of sharing technology among projects” are considered the leading factors of the project portfolio resource risk. Risk-reduction strategic decisions based on the results of risk assessment can be made, which provide project managers with a useful method or tool to manage project risks

    Safety Risk Analysis of Unmanned Ships in Inland Rivers Based on a Fuzzy Bayesian Network

    Get PDF
    Risk factor identification is the basis for risk assessment. To quantify the safety risks of unmanned vessels in inland rivers, through analysis of previous studies, the safety risk impact factor framework of unmanned vessels in inland rivers is established based on three aspects: the ship aspect, the environmental aspect, and the management and control aspect. Relying on Yangtze River, a fuzzy Bayesian network of the sailing safety risk of unmanned ships in inland rivers is constructed. The proposed safety risk model has considered different operational and environmental factors that affect shipping operations. Based on the fuzzy set theory, historical data, and expert judgments and on previous works are used to estimate the base value (prior values) of various risk factors. The case study assessed the safety risk probabilities of unmanned vessels in Yangtze River. By running uncertainty and sensitivity analyses of the model, a significant change in the likelihood of the occurrence of safety risk is identified, and suggests a dominant factor in risk causation. The research results can provide effective information for analyzing the current safety status for navigation systems of unmanned ships in inland rivers. The estimated safety risk provides early warning to take appropriate preventive and mitigative measures to enhance the overall safety of shipping operations. Document type: Articl

    FMECA and FTA analysis applied to the manufacturing process of pulsating heat pipes

    Get PDF
    Pulsating heat pipes (PHPs) offer significant advantages for the thermal control of electronic components due to their simple manufacturing and high heat transfer rates. The reliability of PHPs has traditionally been assessed through long-life testing, but detailed reliability analyses from an equipment perspective are limited. The study of PHP reliability is essential due to its application and operational conditions. For instance, in aerospace applications these devices operate under severe conditions, and maintenance or replacement is impossible during operation, making them critical components in system functionality. The reliability analysis of PHPs focuses on the manufacturing process, considering future operating conditions. Although preliminary PHP testing will be conducted on Earth, laboratory conditions are less stringent due to the difficulty of replicating launch acceleration and space conditions for long-term testing under microgravity. This study presents an FMECA (Failure Modes, Effects, and Criticality Analysis) of the pulsating heat pipe manufacturing process, breaking down the production of each component. The results indicate that the most critical point is concentrated in the assembly of these components, leading to a higher incidence of welding failures. It recommends further work to improve welding and analyze mechanical stresses within the heat pipe

    Handling uncertainty in cloud resource management using fuzzy Bayesian networks

    Full text link
    © 2015 IEEE. The success of cloud services depends critically on the effective management of virtualized resources. This paper aims to design and implement a decision support method to handle uncertainties in resource management from the cloud provider perspective that enables underlying complexity, automates resource provisioning and controls client-perceived quality of service. The paper includes a probabilistic decision making module that relies upon a fuzzy Bayesian network to determine the current situation status of a cloud infrastructure, including physical and virtual machines, and predicts the near future state, that will help the hypervisor to migrate or expand the VMs to reduce execution time and meet quality of service requirements. First, the framework of resource management is presented. Second, the decision making module is developed. Lastly, a series of experiments to investigate the performance of the proposed module is implemented. Experiments reveal the efficiency of the module prototype
    • …
    corecore