50 research outputs found

    Forest species mapping using airborne hyperspectral APEX data

    Get PDF
    Abstract The accurate mapping of forest species is a very important task in relation to the increasing need to better understand the role of the forest ecosystem within environmental dynamics. The objective of this paper is the investigation of the potential of a multi-temporal hyperspectral dataset for the production of a thematic map of the dominant species in the Forêt de Hardt (France). Hyperspectral data were collected in June and September 2013 using the Airborne Prism EXperiment (APEX) sensor, covering the visible, near-infrared and shortwave infrared spectral regions with a spatial resolution of 3 m by 3 m. The map was realized by means of a maximum likelihood supervised classification. The classification was first performed separately on images from June and September and then on the two images together. Class discrimination was performed using as input 3 spectral indices computed as ratios between red edge bands and a blue band for each image. The map was validated using a testing set selected on the basis of a random stratified sampling scheme. Results showed that the algorithm performances improved from an overall accuracy of 59.5% and 48% (for the June and September images, respectively) to an overall accuracy of 74.4%, with the producer's accuracy ranging from 60% to 86% and user's accuracy ranging from 61% to 90%, when both images (June and September) were combined. This study demonstrates that the use of multi-temporal high-resolution images acquired in two different vegetation development stages (i.e., 17 June 2013 and 4 September 2013) allows accurate (overall accuracy 74.4%) local-scale thematic products to be obtained in an operational way

    Mediterranean Forest Species Mapping Using Hyperspectral Imagery

    Get PDF
    2011/2012Advances in hyperspectral technology provides scientists the opportunity to investigate problems that were difficult if not impossible to approach using multispectral data; among those, species composition which is a very important and dynamic forest parameter, linked with many environmental qualities that we want to map and monitor. This study addresses the problem of Mediterranean forest species mapping using satellite EO-1 Hyperion imagery (30m, 196 bands). Two pixel based techniques were evaluated, namely Spectral Angle Mapper (SAM) and Support Vector Machines (SVM), as well as an object oriented approach (GEOBIA). These techniques were applied in two study areas with different species composition and pattern complexity, namely Thasos and Taksiarchis. Extensive field work provided reference data for the accuracy assessment of the produced maps. Image preprocessing included several steps of data corrections and the Minimum Noise Fraction transformation, as means for data dimensionality reduction. In the case of Thasos, where two conifer species are present, SAM technique resulted in an overall accuracy (OA) of 3.9%, SVM technique yielded OA of 89.0% and GEOBIA achieved an OA of 85.3%. In the case of Taksiarchis, where more species are present – both conifers and broadleaved- the respective OA was 80.0%, 82.6% and 74.1%. All three methodologies implemented to investigate the value of hyperspectral imagery in Mediterranean forest species mapping, achieved very accurate results; in some cases equivalent to forest inventory maps. SAM was the straightest forward to implement, only depending on the training samples. Implementation SVM involved the specification of several parameters as well as the use of custom software and was more successful in the challenging landscape of Taksiarchis. GEOBIA adapted to scale through segmentation and extended the exercise of classification, allowing for knowledge based refinement. Lower accuracies could be attributed to the assessment method, as research on alternative assessment methods better adapted to the nature of object space is ongoing. Two typical Mediterranean forests were studied. In Thasos, two conifer species of the same genus, namely Pinus brutia and Pinus nigra, dominate a big part of the island. Both of them were accurately mapped by all methodologies. In Taksiarchis primarily stands of Quercus frainetto mix with stands of Fagus sylvatica and the aforementioned pines. The two pines were again mapped with high accuracy. However, there was a notable confusion between the two broadleaved species, indicating the need for further research, possibly taking advantage of species phenology. The outcome of the proposed methodologies could confidently meet the current needs for vegetation geographical data in regional to national scale, and demonstrate the value of hyperspectral imagery in Mediterranean forest species mapping.XXIII Ciclo198

    Commercial forest species discrimination and mapping using cost effective multispectral remote sensing in midlands region of KwaZulu-Natal province, South Africa.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg, 2018.Discriminating forest species is critical for generating accurate and reliable information necessary for sustainable management and monitoring of forests. Remote sensing has recently become a valuable source of information in commercial forest management. Specifically, high spatial resolution sensors have increasingly become popular in forests mapping and management. However, the utility of such sensors is costly and have limited spatial coverage, necessitating investigation of cost effective, timely and readily available new generation sensors characterized by larger swath width useful for regional mapping. Therefore, this study sought to discriminate and map commercial forest species (i.e. E. dunii, E.grandis, E.mix, A.mearnsii, P.taedea and P.tecunumanii, P.elliotte) using cost effective multispectral sensors. The first objective of this study was to evaluate the utility of freely available Landsat 8 Operational Land Imager (OLI) in mapping commercial forest species. Using Partial Least Square Discriminant Analysis algorithm, results showed that Landsat 8 OLI and pan-sharpened version of Landsat 8 OLI image achieved an overall classification accuracy of 79 and 77.8%, respectively, while WorldView-2 used as a benchmark image, obtained 86.5%. Despite low spatial of resolution 30 m, result show that Landsat 8 OLI was reliable in discriminating forest species with reasonable and acceptable accuracy. This freely available imagery provides cheaper and accessible alternative that covers larger swath-width, necessary for regional and local forests assessment and management. The second objective was to examine the effectiveness of Sentinel-1 and 2 for commercial forest species mapping. With the use of Linear Discriminant Analysis, results showed an overall accuracy of 84% when using Sentinel 2 raw image as a standalone data. However, when Sentinel 2 was fused with Sentinel’s 1 Synthetic Aperture Radar (SAR) data, the overall accuracy increased to 88% using Vertical transmit/Horizontal receive (VH) polarization and 87% with Vertical transmit/Vertical receive (VV) polarization datasets. The utility of SAR data demonstrates capability for complementing Sentinel-2 multispectral imagery in forest species mapping and management. Overall, newly generated and readily available sensors demonstrated capability to accurately provide reliable information critical for mapping and monitoring of commercial forest species at local and regional scales

    Forest Species Mapping using Sentinel 2A images for the Central Alentejo Region (Portugal)

    Get PDF
    In past years, studies about Land Use and Land Cover (LULC) have been approached extensively in remote sensing for providing information on the environmental and global changes in the landscape. In the forest species mapping, one of the major challenges when using Sentinel-2 (S2A) multispectral data is to delineate and discriminate areas of heterogeneous forest components with spectral similarity at the canopy level. In this context, the main objective of this study was to evaluate the S2A data performance for LULC mapping, using a Random Forest classifier (RF). A set of 26 independent variables derived from the 2019 summer period S2A data, with a spatial resolution of 10 m, was used. A total of eight object-based LULC classes were created, four forest classes (Quercus suber, Quercus rotundifólia, Eucalyptus sp, and Pinus pinea) and four other uses. For this propose supervised classification method was applied using the RF classifier. The cartography accuracy assessment was performed using the statistics confusion matrix and Kappa coefficient (k). This study showed that the RF classifier achieved high overall accuracy (92%) and Kappa (91%) for the four forest classes defined using S2A data

    Feature Relevance Assessment Of Multispectral Airborne Lidar Data For Tree Species Classification

    Get PDF
    Abstract. The presented experiment investigates the potential of Multispectral Laser Scanning (MLS) point clouds for single tree species classification. The basic idea is to simulate a MLS sensor by combining two different Lidar sensors providing three different wavelngthes. The available data were acquired in the summer 2016 at the same date in a leaf-on condition with an average point density of 37 points/m2. For the purpose of classification, we segmented the combined 3D point clouds consisiting of three different spectral channels into 3D clusters using Normalized Cut segmentation approach. Then, we extracted four group of features from the 3D point cloud space. Once a varity of features has been extracted, we applied forward stepwise feature selection in order to reduce the number of irrelevant or redundant features. For the classification, we used multinomial logestic regression with L1 regularization. Our study is conducted using 586 ground measured single trees from 20 sample plots in the Bavarian Forest National Park, in Germany. Due to lack of reference data for some rare species, we focused on four classes of species. The results show an improvement between 4–10 pp for the tree species classification by using MLS data in comparison to a single wavelength based approach. A cross validated (15-fold) accuracy of 0.75 can be achieved when all feature sets from three different spectral channels are used. Our results cleary indicates that the use of MLS point clouds has great potential to improve detailed forest species mapping. </jats:p

    PENGGUNAAN CITRA SENTINEL 2A UNTUK ANALISIS TUTUPAN LAHAN DAN KERAPATAN VEGETASI DI SUB DAS SALUBI

    Get PDF
    Land cover and vegetation density are important information needed in watershed management activities (planning, utilization, supervision and control). Remote sensing technology has been widely used to produce information on land cover and vegetation density due to the availability of multitemporal, multispectral data with high spatial resolution. The purpose of this research is to determine land cover and vegetation density using sentinel 2A imagery in the Salubi sub-watershed. The research was conducted in the Salubi sub-watershed, Central Sulawesi Province. Research activities include digital image analysis using unsupervised classification techniques and NDVI (Normalized Vegetation Index), field measurements and accuracy tests (confussion matriks). The results show that the land cover consisted of 45.61% forest (643.09 Ha), 36.66% (516.81 Ha) mixed dryland agriculture, 10.72% paddy fields (151.11 Ha), shrubs 2.8 % (36.41 Ha), water bodies 1.62% (22.84 Ha), bare land 0.99 % (13.95 Ha), settlement 0.98 % (13.87 Ha), grassland 0.84 % (11.79 Ha), with an accuracy of 90 % (overall accuracy) and 89.54 % (kappa accuracy). Vegetation density consists of high 79.48% (1,120.61 Ha), medium 15.52% (218.86 Ha), low 4.15% (58.53 Ha), non-vegetation 0.84% (11.87 Ha

    COMPARISON OF MACHINE LEARNING MODELS FOR LAND COVER CLASSIFICATION

    Get PDF
    Land cover data remain one of crucial information for public use.  With rapid human-associated land alteration, this information needs to be frequently updated. Remotely-sensed data provide the best option to construct land cover maps with numerous methods available in the literature. While disagreement exists to select the robust one, further exploration should be made to extend the understanding on the behavior of machine learners, in particular, for classification problems. This article discusses performance of pixel-based machine learning algorithms, frequently used in research or implementation. Five popular algorithms were evaluated to distinguish five rural land cover classes, i.e. built-ups, crops, mixed garden, oil palm plantations and rubber estates, from Sentinel-2 data. This research found that the benchmark, classification and regression tree, was unable to differentiate woody vegetation, although the overall accuracy was sufficiently moderate. This suggested that overall accuracy cannot be seen as the only measure for assessing the quality of the thematic output. Meanwhile, support vector machines and random forest competed to yield the highest accuracy and class detection capability, although the latter was in favor with 98% accuracy level. A newly developed model, like extreme gradient boosting, achieved a similar level of accuracy. This research implies that modern machine learning approaches would be invaluable for land cover classification; hence, access to these modeling toolkits is substantial

    Resource Communication : ForestAz - Using Google Earth Engine and Sentinel data for forest monitoring in the Azores Islands (Portugal)

    Get PDF
    AIM OF STUDY: ForestAz application was developed to (i) map Azorean forest areas accurately through semiautomatic supervised classification; (ii) assess vegetation condition (e.g., greenness and moisture) by computing and comparing several spectral indices; and (iii) quantitatively evaluate the stocks and dynamics of aboveground carbon (AGC) sequestrated by Azorean forest areas. AREA OF STUDY: ForestAz focuses primarily on the Public Forest Perimeter of S. Miguel Island (Archipelago of the Azores, Portugal), with about 3808 hectares. MATERIAL AND METHODS: ForestAz was developed with Javascript for the Google Earth Engine platform, relying solely on open satellite remote sensing data, as Copernicus Sentinel-1 (Synthetic Aperture Radar) and Sentinel-2 (multispectral). MAIN RESULTS: By accurately mapping S. Miguel island forest areas using a detailed species-based vegetation mapping approach; by allowing frequent and periodic monitoring of vegetation condition; and by quantitatively assessing the stocks and dynamics of AGC by these forest areas, this remote sensing-based application may constitute a robust and low-cost operational tool able to support local/regional decision-making on forest planning and management. RESEARCH HIGHLIGHTS: This collaborative initiative between the University of the Azores and the Azores Regional Authority in Forest Affairs was selected to be one of the 99 user stories by local and regional authorities described in the catalog edited by the European Commission, the Network of European Regions Using Space Technologies (NEREUS Association), and the European Space Agency (ESA).info:eu-repo/semantics/publishedVersio

    Forest cover mapping and Pinus species classification using very high-resolution satellite images and random forest

    Get PDF
    Advances in remote sensing technologies are generating new perspectives concerning the role of and methods used for National Forestry Inventories (NFIs). The increase in computation capabilities over the last several decades and the development of new statistical techniques have allowed for the automation of forest resource map generation through image analysis techniques and machine learning algorithms. The availability of large-scale data and the high temporal resolution that satellite platforms provide mean that it is possible to obtain updated information about forest resources at the stand level, thus increasing the quality of the spatial information. However, photointerpretation of satellite and aerial images is still the most common way that remote sensing information is used for NFIs or forest management purposes. This study describes a methodology that automatically maps the main forest covers in Galicia (Eucalyptus spp., conifers and broadleaves) using Worldview-2 and the random forest classifier. Furthermore, the method also evaluates the separate mapping of the three most abundant Pinus tree species in Galicia (Pinus pinaster, Pinus radiata and Pinus sylvestris). According to the results, Worldview-2 multispectral images allow for the efficient differentiation between the main forest classes that are present in Galicia with a very high degree of accuracy (91%) and ample spatial detail. Pinus species can also be efficiently differentiated (83%).Xunta de GaliciaAgencia Estatal de Investigación | Ref. PID2019-111581RB-I00Universidade de Vig
    corecore