14,584 research outputs found

    Herbivores Alleviate the Negative Effects of Extreme Drought on Plant Community by Enhancing Dominant Species

    Get PDF
    Aims Both extreme drought and insect herbivores can suppress plant growth in grassland communities. However, most studies have examined extreme drought and insects in isolation, and there is reason to believe that insects might alter the ability of grasslands to withstand drought. Unfortunately, few studies have tested the interactive effects of extreme drought and insect herbivores in grassland communities. Methods Here, we tested the drought–herbivore interactions using a manipulative experiment that factorially crossed extreme drought with the exclusion of insect herbivores in a temperate semiarid grassland in Inner Mongolia. Important Findings Our results demonstrated that both extreme drought and insect herbivores separately decreased total plant cover. When combined, insect herbivores reduced the impact of drought on total cover by increasing the relative abundance of drought-resistant dominant species. Our results highlight that the negative effect of extreme drought on total plant cover could be alleviated by maintaining robust insect herbivore communities

    Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    Get PDF
    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs

    Role of Glycine max in improving drought tolerance in Zanthoxylum bungeanum

    Get PDF
    Intercropping may improve community stability and yield under climate change. Here, we set up a field experiment to evaluate the advantages of cultivating Z anthoxylum bungeanum with Capsicum annum, and Z. bungeanum with Glycine max as intercrops, compared with cultivating Z. bungeanum in monoculture. Effects of extreme drought stress conditions on morphological, physiological, and biochemical traits of the three crop species cultivated in the three contrasting planting systems were compared. Results showed that extreme drought conditions induced negative impacts on Z. bungeanum grown in monoculture, due to reduced growth and metabolic impairment. However, limited stomatal conductance, reduced transpiration rate (Tr), and increased water use efficiency, carotenoid content, catalase activity, and accumulation of soluble sugars in Z. bungeanum indicated its adaptive strategies for tolerance of extreme drought stress conditions. Compared with cultivation in monoculture, intercropping with C. annum had positive effects on Z. bungeanum under extreme drought stress conditions, as a result of improved crown diameter, leaf relative water content (LRWC), net photosynthetic rate, and proline content, while intercropping with G. max under extreme drought stress conditions increased net CO2 assimilation rates, LRWC, Tr , and superoxide dismutase (SOD) activity. In conclusion, Z. bungeanum has an effective defense mechanism for extreme drought stress tolerance. Intercropping with G. max enhanced this tolerance potential primarily through its physio-biochemical adjustments, rather than as a result of nitrogen fixation by G. max.Fil: Li, Zilong. Chinese Academy of Sciences; República de China. Guizhou University of Traditional Chinese Medicine; ChinaFil: Tariq, Akash. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; ChinaFil: Pan, Kaiwen. Chinese Academy of Sciences; República de ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Sun, Feng. Chinese Academy of Sciences; República de ChinaFil: Song, Dagang. Biogas Institute of Ministry of Agriculture and Rural Affairs; ChinaFil: Olatunji, Olusanya Abiodun. Fujian Normal University; Chin

    Extent and Intensity of Extreme Drought in Some Parts of the Savanna Region of Nigeria

    Get PDF
    This study is on the extent and intensity of extreme drought in some parts of the Savanna Region of Nigeria. The region is prone to drought occurrences. Data used were from 1941 to 2010 and for eight stations scattered over the region. The Bhalme and Mooley Drought Index (BMDI) was used to depict extreme droughts occurrence. This was with the intention of finding out the percentage of extreme drought occurrences over a 70 year period (1941-2010).Results showed that extreme droughts were confined to stations in the extreme north of the study area and for limited time during the study period. Apart from these, other findings were made and are in the study. Also the effects of droughts especially extreme and the mitigation measures were looked at. Key Words: Extreme, Drought, Drought Intensity, Percentages, Sub-perio

    Malawi’s Experience with Weather Index Insurance as Agricultural Risk Mitigation Strategy Against Extreme Drought Events 1

    Get PDF
    Malawi continues to face unprecedented challenges imposed by extreme weather events—drought in particular. Because the economy is heavily dependent on climate-sensitive agriculture, Malawi is highly vulnerable to extreme drought events. Faced with a growing number of extreme drought events, the government of Malawi is determined to implement weather index insurance as part and parcel of its nationwide disaster risk mitigation strategy. This study seeks to interrogate and highlight the obstacles that have hampered successful implementation and development of weather index insurance in Malawi beyond the pilot phase. The study draws on a few examples to demonstrate other countries’ successful experience with weather index insurance as a drought risk mitigation tool. The study concludes by highlighting important lessons that could help the government of Malawi to re-think the next phase of development of weather index insurance program as an effective risk protection strategy against extreme drought events

    Tropical river suspended sediment and solute dynamics in storms during an extreme drought

    Get PDF
    Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) “new water” dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry

    Understanding the impact of droughts in the Yarmouk Basin, Jordan: monitoring droughts through meteorological and hydrological drought indices

    Get PDF
    This article assesses drought status in the Yarmouk Basin (YB), in northern Jordan, using the Standardized Precipitation Index (SPI), the Standardized Water-Level Index (SWI), and the Percent Departure from Normal rainfall (PDNimd) during the years 1993–2014. The results showed that the YB suffers from frequent and irregular periods of drought as variations in drought intensity and frequency have been observed. The SPI results revealed that the highest drought magnitude of − 2.34 appeared at Nuaimeh rainfall station in 1991. This station has also experienced severe drought particularly in years 1995, 1999, 2005, and 2012 with SPI values ranging from − 1.51 to − 1.59. Some other rainfall stations such as Baqura, Ibbin, Khanasiri, Kharja, Mafraq police, Ramtha, Turra, and Umm Qais have also suffered several periods of drought mostly in 1993. The SWI results show the highest extreme drought events in 2001 in Souf well while other extreme drought periods were observed at Wadi Elyabis well in 1994 and at Mafraq well in 1995. As compared to SPI maps, our SWI maps reflect severe and extreme drought events in most years, negatively impacting the groundwater levels in the study area

    Tuart canopy die-off during severe drought and heatwave

    Get PDF
    A severe and sudden die-off event, occurring in the regionally significant tuart (Eucalyptus gomphocephala) woodland in Rockingham Regional Park, coincided with extreme drought and heat conditions in early 2011
    corecore