11,475 research outputs found

    Automated generation of constructive ordering heuristics for educational timetabling

    Get PDF
    Construction heuristics play an important role in solving combinatorial optimization problems. These heuristics are usually used to create an initial solution to the problem which is improved using optimization techniques such as metaheuristics. For examination timetabling and university course timetabling problems essentially graph colouring heuristics have been used for this purpose. The process of deriving heuristics manually for educational timetabling is a time consuming task. Furthermore, according to the no free lunch theorem different heuristics will perform well for different problems and problem instances. Hence, automating the induction of construction heuristics will reduce the man hours involved in creating such heuristics, allow for the derivation of problem specific heuristics and possibly result in the derivation of heuristics that humans have not thought of. This paper presents generation construction hyper-heuristics for educational timetabling. The study investigates the automatic induction of two types of construction heuristics, namely, arithmetic heuristics and hierarchical heuristics. Genetic programming is used to evolve arithmetic heuristics. Genetic programming, genetic algorithms and the generation of random heuristic combinations is examined for the generation of hierarchical heuristics. The hyper-heuristics generating both types of heuristics are applied to the examination timetabling and the curriculum based university course timetabling problems. The evolved heuristics were found to perform much better than the existing graph colouring heuristics used for this domain. Furthermore, it was found that the while the arithmetic heuristics were more effective for the examination timetabling problem, the hierarchical heuristics produced better results than the arithmetic heuristics for the curriculum based course timetabling problem. Genetic algorithms proved to be the most effective at inducing hierarchical heuristics

    Adapting Artificial Immune Algorithms For University Timetabling

    Get PDF
    Penjadualan kelas dan peperiksaan di universiti adalah masalah pengoptimuman berkekangan tinggi. University class and examination timetabling are highly constrained optimization problems

    An XML format for benchmarks in High School Timetabling

    Get PDF
    The High School Timetabling Problem is amongst the most widely used timetabling problems. This problem has varying structures in different high schools even within the same country or educational system. Due to lack of standard benchmarks and data formats this problem has been studied less than other timetabling problems in the literature. In this paper we describe the High School Timetabling Problem in several countries in order to find a common set of constraints and objectives. Our main goal is to provide exchangeable benchmarks for this problem. To achieve this we propose a standard data format suitable for different countries and educational systems, defined by an XML schema. The schema and datasets are available online

    Cyclic transfers in school timetabling

    Get PDF
    In this paper we propose a neighbourhood structure based on sequential/cyclic moves and a cyclic transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world data sets for high school timetabling in the Netherlands and England.We present results of the cyclic transfer algorithm with different settings on these data sets. The costs decrease by 8–28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers

    A memetic algorithm for the university course timetabling problem

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe design of course timetables for academic institutions is a very hectic job due to the exponential number of possible feasible timetables with respect to the problem size. This process involves lots of constraints that must be respected and a huge search space to be explored, even if the size of the problem input is not significantly large. On the other hand, the problem itself does not have a widely approved definition, since different institutions face different variations of the problem. This paper presents a memetic algorithm that integrates two local search methods into the genetic algorithm for solving the university course timetabling problem (UCTP). These two local search methods use their exploitive search ability to improve the explorative search ability of genetic algorithms. The experimental results indicate that the proposed memetic algorithm is efficient for solving the UCTP

    A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling

    Get PDF
    Copyright @ Springer Science + Business Media. All rights reserved.The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02

    Fairness in Academic Course Timetabling

    Full text link
    We consider the problem of creating fair course timetables in the setting of a university. Our motivation is to improve the overall satisfaction of individuals concerned (students, teachers, etc.) by providing a fair timetable to them. The central idea is that undesirable arrangements in the course timetable, i.e., violations of soft constraints, should be distributed in a fair way among the individuals. We propose two formulations for the fair course timetabling problem that are based on max-min fairness and Jain's fairness index, respectively. Furthermore, we present and experimentally evaluate an optimization algorithm based on simulated annealing for solving max-min fair course timetabling problems. The new contribution is concerned with measuring the energy difference between two timetables, i.e., how much worse a timetable is compared to another timetable with respect to max-min fairness. We introduce three different energy difference measures and evaluate their impact on the overall algorithm performance. The second proposed problem formulation focuses on the tradeoff between fairness and the total amount of soft constraint violations. Our experimental evaluation shows that the known best solutions to the ITC2007 curriculum-based course timetabling instances are quite fair with respect to Jain's fairness index. However, the experiments also show that the fairness can be improved further for only a rather small increase in the total amount of soft constraint violations.Comment: appeared in PATAT 2012, pp. 114-13

    Timetabling in constraint logic programming

    Get PDF
    In this paper we describe the timetabling problem and its solvability in a Constraint Logic Programming Language. A solution to the problem has been developed and implemented in ECLiPSe, since it deals with finite domains, it has well-defined interfaces between basic building blocks and supports good debugging facilities. The implemented timetable was based on the existing, currently used, timetables at the School of Informatics at out university. It integrates constraints concerning room and period availability

    A guided search non-dominated sorting genetic algorithm for the multi-objective university course timetabling problem

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2011.The university course timetabling problem is a typical combinatorial optimization problem. This paper tackles the multi-objective university course timetabling problem (MOUCTP) and proposes a guided search non-dominated sorting genetic algorithm to solve the MOUCTP. The proposed algorithm integrates a guided search technique, which uses a memory to store useful information extracted from previous good solutions to guide the generation of new solutions, and two local search schemes to enhance its performance for the MOUCTP. The experimental results based on a set of test problems show that the proposed algorithm is efficient for solving the MOUCTP
    corecore