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Abstract
In this paper we describe the  timetabling problem and its solvability in a Constraint Logic
Programming Language. A solution to the problem has been developed and implemented in
ECLiPSe, since it deals with finite domains, it has well-defined interfaces between basic
building blocks and supports good debugging facilities. The implemented timetable was
based on the existing, currently used, timetables at the School of Informatics at out
university. It integrates constraints concerning room and period availability.

1. Introduction
During the last twenty years many contributions related to timetabling have appeared and it will probably continue
with the same rate for years. The reason for this could be the huge variety of problems which are included in the field
of timetabling; or it could be the fact that educational methods are changing, so models have to be modified to meet
those changes.

One specialised area of timetabling is the school or university timetables. In particular, course timetabling within a
university has been a tedious task for university administration. Its aim is to arrange periods, modules, rooms and
lecturers to all courses in an academic year. The limited number of human and material resources available, such as
lecturers, rooms or time, and the restrictions of their use means that the timetables have to be constrained so that
certain conditions are met.

The construction of timetables, involving three or more variables, taking values from domains, having hundreds of
values with several constraints, is a very common problem. Various heuristic solutions have been proposed using
results based on graph theory, mathematical programming and manual methods. In this paper, an approach based on
Constraint Logic Programming is proposed.

Constraint Logic Programming is a relative newcomer to the area of timetabling although some work has been done
in related areas. It is particularly well suited for timetabling problems, since it allows the formulation of all
constraints of the problem in a more declarative way than other approaches. Constraints help to solve the problem in
a finite amount of time, by stating various relationships between the variables.

2. The Timetabling Problem
Every year or term in a university, every individual department has to design a new timetable for courses. The
timetabling problem consists of placing these courses (modules) which share resources, such as lecturers or
classrooms, in a weekly calendar. In the School of Informatics at our university, a module usually consists of lectures
of two hours per week and tutorials of one hour per week. Several constraints have to be considered for each
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timetable, for example no two lectures can take place at the same room at the same time, or the capacity of a room
must not be less than the number of students attending a lecture, and so on.

Until now, the timetables are constructed by hand and consequently leading to problems concerning the correctness
of the timetable, as well as time consuming problems. Usually, the timetabling process consists of two distinct
phases:

• First, the curricula are defined for each module and the various resources (time, rooms, lecturers) must be
assigned to the classes.

• Second, a feasible timetable must be found, which is compatible with the previously defined requirements.

Generally the role of computers is to handle the second phase.

3. CLP and ECLiPSe

Constraint Logic Programming (CLP) is a generalisation of Logic Programming (LP) where unification, the basic
operation of LP languages, is replaced by constraint handling in a constraint system. The resulting languages
combine the advantages of LP (declarative semantics, non-determinism, relational form) with the efficiency of
constraint-solving algorithms. Therefore, the advantages of such languages rely on the fact that the user does not
need to concern himself with search techniques, the stating of the constraints is straightforward and the programs can
easily be modified and extended.

In the paradigm of constraint logic programming, a constraint satisfaction problem can be written in the form of
Horn clause logic programs in which the clause bodies may contain constraints. Constraints are generated
incrementally during run-time and passed to a constraint solving mechanism which applies a domain-dependent
constraint satisfaction technique, such as linear programming, Boolean unification and so on, to find a feasible
solution for the constraints. Such an approach is still search-based, but it can effectively reduce the search space and
improve the inefficient ‘generate and test’ nature of problem solving. So CLP introduces a new method of
computation known as the ‘constrain and generate’ approach.

ECLiPSe (ECRC1 Common Logic Programming System) is a Constraint Logic Programming language. It is a Prolog
based system whose aim is to serve as a platform for integrating various logic programming extensions. The kernel
of ECLiPSe is an efficient implementation of standard Prolog and it is built around an incremental compiler which
compiles the Prolog source into WAM2-like code [Ecl95a].

The ECLiPSe logic programming system is an integration of ECRC’s SEPIA, MegaLog and CHIP system and newly
developed libraries. This combination is now the default configuration of the system. ECLiPSe has become a tool
which is powerful, flexible and general enough to be of use to all programmers in the LP field [Ecl95b]. In
particular, the finite domains library of ECLiPSe implements constraints that involve integers as well as atomic data
and supports the writing of user-defined constraints over variables with finite atomic or ground domains.

4. Timetabling in a CLP language
Constraint Logic Programming is particularly well suited for timetabling problems. It allows the formulation of all
the constraints in a declarative way. Although its performance can be greatly affected by minor changes in problem
formulation, the alternatives in formulation are still within the bounds of logical equivalence.

The timetable problem is a large scale combinatorial problem, with an extremely large search space. Thus, by
solving the problem in a CLP language, the search space can effectively be reduced to smaller search trees that lead
to results within a finite amount of time.

In a CLP language that makes use of finite domains, e.g. ECLiPSe or CLP(FD), the time periods and rooms can be
expressed in terms of integers within given domains. Then, most of the constraints can be integrated as arithmetic
constraints. As in all CLP programs used to solve Constraint Satisfaction Problems, the overall structure of a

                                               
1 ECRC is the name for the European Computer Industry Research Centre.
2 WAM are the initials for Warren Abstract Machine.
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timetable program would first state the domains of the problem variable, then state the constraints and finally
generate the values.

5. Design and Implementation
At this time, the construction of the timetables in our university is paper based. The main procedures for constructing
a timetable by hand, as explained by the School of Informatics’ timetabler [Fel95] are discussed below.

First of all most of the information comes from the course director, concerning the modules offered to students and
the lecturers teaching each module. Then all the lecturers state their preferences e.g. if they like double period
lectures, on which days they prefer to give lectures, how they like their tutorials to be taught (e.g. in small groups)
and where (room or a laboratory) etc. Information about the periods that must be reserved for student union actions
and lunch breaks are also taken into account. In addition, the time length of lectures and generally of the periods must
be known.

In the case of the MSc course, where both full-time and part-time students are taking various modules, the vast
majority of the lectures are taught on two certain days.

With this information in mind, a timetable is written on paper. No program is used for completing the timetable,
although a word-processing package is used at the end to write the timetable in a presentable form.

The timetabler is not responsible for the room allocation. This is the job of certain people that allocate rooms for the
timetables of the whole university. The School of Informatics timetabler just presents his requirements for rooms
along with the adjusted capacity and the periods during which the rooms are needed, to these people and they, in turn,
accept or reject his requirements and allocate the rooms. When a correct version of the timetable is ready, it is
presented to the course director. If it is approved, it is passed to the lecturers and students.

In a similar way a CLP program will follow the main steps in order to produce a feasible timetable program.

The facts that will be given to the program are:

• The teaching periods,
• The lecturers and which modules they can teach,
• The rooms and their capacities,
• Various constraints.

The program will then:

• Allocate lecturers to modules,
• Allocate teaching periods to modules,
• Allocate rooms to teaching periods,
• Generate a timetable.

The timetable to be constructed consists of 45 periods. The first lecture on one day starts at 9:00am, while the last
one starts at 5:00pm. Thus, each day comprises of 9 periods and each week of 45 periods. Period 1 is the first period
on a Monday, period 2 is the second period on a Monday, period 10 is the first period on a Tuesday, and so on. All
lectures start at 9:00, 10:00, 11:00 etc. with a 10 minute break at 50 minutes past each hour. Thus each lecture lasts
for 50 minutes.
The timetable program will schedule its main elements (lecturers, periods, modules and rooms) in a way that:

• No two modules must be taught in the same room at the same time.
• All modules must be scheduled.
• All rooms must be large enough to hold the classes assigned to them.
• No lecturer can be teaching in two rooms at the same time.

The above consist the main constraints of the program that must be satisfied in all instances of any timetable. Some
additional constraints integrated in this specific timetable are stated below:

• Periods 24-27 (Wednesday afternoon) are reserved for student union activities.

• Periods 5, 14, 23, 32, 41 (periods between 1:00-2:00 each day) are available for lunch.
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• Each module is taught in two periods of lectures and one period of tutorial/lab.

• All modules taught to the first year students are obligatory.

• Double lectures cannot begin on one day and finish on the next day.

• There must be no nine lectures taught on one day.

• All double periods must be stated and there must be a free period before and after each double period.

The timetable will be represented as a set of quadruples, each quadruple representing a period along with the module
that is taught at that period, the lecturer teaching that module and the room in which the lecture will take place. The
constraints on the periods, modules, lecturers and rooms will be represented as arithmetic constraints. The program
will then assign a period to a module, at which period that module is to be taught. The program must also find a
room that will fit all the students attending that lecture. The capacities of the room and the minimum and maximum
numbers of students attending each lecture are given as data to the program.

The program integrates the timetables for the first and second year of a university degree. In the same way it can be
extended to include as many years as required.

5.1 Set Theoretic Specification
The variables in the timetable problem are the periods, the modules, the rooms and the lecturers. Their domains,
using a mathematical description, based on set theory, are the following:

Period 1..45

Mod M

Modpart M→{1,2,3}

Room R

Lecturer L

Periods can take values form 1 to 45 and modules can take values from M, where M is the set of the module names.
Since each module is taught in three periods, Modpart is used which maps each module to the domain {1,2,3}, thus
forming the three taught periods (module parts) for each module. Finally, rooms take values from the domain R and
lecturers take values from the domain L.

The main functions on the above domains are the following:

taughtby: Modpart → L

when: Modpart → Period

where: Modpart → R

The function taughtby denotes which lecturer teaches which module part. The function when gives the period in
which a module part is taught and the function where gives the room in which it is taught.

The invariant is a rule which, when recognised, provides understanding. The invariant properties specify the
relationship that must hold between the values of the objects in the timetable system. The invariants for the above
functions are the following:

• No room can be used for more than one module part at a time. This is represented as

(where &  when)−1  ∈   (Period x R) a  Modpart

The &  operator is defined as

& : (X↔Y) x (X↔Z) → (X→(YxZ))

So (where &  when) is the function (Modpart→(Period x R)) and the inverse of that is the function ((Period x
R)→ Modpart). But the rule states that the latter is a partial function (a ), i.e. an instance of the set (Period x R)
that denotes a room at a certain period, can only map to one module part.



-5-

• Every module part is taught by the same lecturer. This is represented as

(dom o  (taughtby) −1) −1  ∈   M→ L

The dom operator gives the domain of a function. The inverse of the function taughtby is L→Modpart and
consequently L→{1,2,3}, having L as its domain. The inverse of that will now be {1,2,3}→L and will map the
module parts to lecturers. But, as stated by the rule, this belongs to the set M→L, which maps each module to a
lecturer. So all module parts representing the same module must be taught by the same lecturer.

• No lecturer can be teaching in two rooms at the same time. This is represented as

codom((taughtby &  when) &  where)  ∈   (L x Period) a  Modpart

The codom operator gives the range of a function. According to the definition of the &  operator, the function
((taughtby &  when) &  where) becomes the function (Modpart → (L x Period x R)) which has the range (L x
Period x R). But this belongs to the partial function ((L x Period) a  Modpart) which states that an instance of
the set (L x Period) can only map to one value of Modparts and thus denoting that at a given period a lecturer can
only teach one module part.

5.2 High Level Design
The high level design of the timetable program can be derived from the mathematical description of the problem,
defined in the previous section using set theory.

In the high level design the periods are stated as before and can take values from 1 to 45. The Mod and Modpart
variables in the mathematical description are now collapsed to form one set of variables representing the various
parts of all the modules, i.e. if there are two modules, A and B, the module set will contain the variables A(1), A(2),
A(3), B(1), B(2), B(3), where A(1), A(2), A(3) are the module parts for module A and B(1), B(2), B(3) are the
module parts for module B. The rooms are enumerated and can take values from 1 to 20. Lecturers are also
enumerated.

The timetable I designed includes two years of a degree, each one having five modules. Each module is taught in
three periods, so we have a total of thirty taught periods, thirty rooms that must be reserved and ten lecturers
teaching the modules. The set of periods, rooms and lecturers, are restricted so that they do not have repeated values.
Consequently, they can be represented as lists.

A high level representation of the timetable program will be the following:

Periods1st = [P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,

   P13,P14,P15],

Periods2nd = [P16,P17,P18,P19,P20,P21,P22,P23,P24,P25,

   P26,P27,P28,P29,P30],

Room = [R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,

   R15,R16,R17,R18,R19,R20,R21,R22,R23,R24,R25,R26,

   R27,R28,R29,R30],

Lecturer = [L1,L2,L3,L4,L5,L6,L7,L8,L9,L10],

Periods1st :: 1..45,

Periods2nd :: 1..45,

Room :: 1..20,

Lecturer :: [white,peterson,novac,smith,black,johnson,

  daniels,conlon,fisher,roberts],

alldifferent(Periods1st),

alldifferent(Periods2nd),

alldifferent(Lecturer).
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Periods1st and Periods2nd express the taught periods for the first and the second year respectively. The variable
Room can take values from 1 to 20, since there are twenty rooms in the building.

The invariant denoting that no room can be used for more than one module part at a time will be implemented in
association with the periods. In one year all modules are obligatory and are taught at different times, so there will be
no room booked for two different module parts at the same time. But when we have two years and two modules (the
first module from one year and the second module from another year) that can appear at the same time, a clause must
be defined that ensures that these modules are not taught in the same room.

The invariant denoting that every module part must be taught by the same lecturer will be implemented by having the
same lecturer variable appearing as the lecturer for all parts of a module, e.g. lecturer L1 will be teaching modules
A(1), A(2) and A(3), where A(1),A(2),A(3) are the module parts for module A.

5.3 Implementation
The timetable program is written in ECLiPSe.

At the beginning of the program, data about which modules are taught by which lecturers, the number of students
attending the modules and the capacities of all the rooms are stated.

For example the fact

teaches(white,databases).

states that Mr. White may teach the module ‘databases’. In the same way all the modules that the lecturers teach are
stated.

A clause of the form

find_room(db(D), Num):-D#<3,Num#<=60,Num#>=20.

denotes that the two lectures of the module ‘databases’ (db) have 20-60 students attending it.

Then a clause of the form

capacity(1,Capacity):-Capacity#<=30,Capacity#>=15.

denotes that room 1 can fit 15-30 students.

The program, by combining the above two clauses, can then allocate a room to a module, according to the capacity
of the room, for example the rule

find_room(db(1),Capacity), capacity(R1,Capacity)

will find a room for the first lecture of the module ‘databases’, by matching the number of students attending that
lecture (variable Capacity in the find_room predicate) with the capacity of a room (variable Capacity in the capacity
predicate).

According to the design, the timetable is represented as a list of quadruples of the form

m(P1,db(1),R1,L1)

where P1 is the period at which the first lecture of the module databases (db(1)) is taught. The lecture will be taught
in room R1 by lecturer L1.

The variables for periods, lecturers and rooms, and their domains are written in ECLiPSe as they appear in the high
level design.

All the periods in the first year must be unique, since all the modules are obligatory and must not be taught at the
same time. The same holds for the periods in the second year. So the following predicates are used, that make sure
that the periods in the first and second year are unique

alldifferent(Periods1st),

alldifferent(Periods2nd)
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At the beginning of the program, the list of the free periods for the first and the second year are given in the lists
FreePeriods1st and FreePeriods2nd. The free periods are reserved either for student activities and are fixed, or they
vary according to the allocation of double periods (explained later).

The constraints about the periods and the rooms take the form of arithmetic constraints, for example the constraint

P2#<10

states that period 2, representing the second taught period of the module databases is on Monday.

Constraints using the predicate between state that the taught period for a lecture will take values from a more
restricted domain. For example the constraint

between(P9,27,37)

states that period P9, representing the third period for the module ‘computer hardware’ must appear between periods
27 and 37 , i.e. on Tuesday.

In addition to the above, a period constraint can force a period to take values from a given domain, by using the
built-in predicate member. So, the constraint

member(P10,[6,15,33,42])

denotes that P10, representing a lecture for software engineering, can take the values 6, 15, 33 or 42.

At the beginning of the program two lists of free periods are stated. The clause notin will constraint the
taught periods of the first or the second year so that they do not appear in the corresponding list of the free periods
for that year.

A clause double_period will constrain two periods of the same module to be consecutive, thus forming a double
period. The clause also makes sure that the double period is not split in two days, i.e. the first half of the double
period cannot appear as the last period of one day and the second half as the first period of the next day.

Any period before and after a double period must be free, in order to avoid any displeasure of students. Such periods
are expressed using arithmetic constraints and then adding these constraints in the free periods list. For example the
predicate

BefrDBdouble#=P1-1

finds the period before P1 (P1 representing the first half of the databases double period). Then the period
BefrDBdouble is added to the FreePeriods1st list.

In order to prevent any clash of the rooms, i.e. allocate the same room at the same period for two different lectures,
the clause noclash is used. At the beginning of the program two lists representing the periods at which the rooms are
occupied for the first and the second year. These lists are the following:

Rooms1st=[(P1,R1),(P2,R2),...(P15,R15)],

Rooms2nd=[(P16,R16),(P17,R17),...,(R30,R30)]

Then a call of the clause

noclash(Rooms1st,Rooms2nd)

will prevent such a clash.

Since the periods can take values from a large domain, the constraints cannot restrict them enough in order to give
just one value for each period. Instead, the solution of the timetable will give a range of the values the periods can
take. A real-life timetable would be useless if it was presented in such a away. In order to avoid this, the periods are
instantiated at the end of the program. This is accomplished by using the built-in predicate labeling. So, the program
finishes with the predicates:

labeling(Periods1st),

labeling(Periods2nd).
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It must also be noted that the order of the clauses in the program is very important. Any constraints must be stated at
the beginning of the program, then the code for the various clauses must follow and at the end the labelling procedure
is added. If the constraints and the code are not given in this order, then the program might fail to give a solution.

Finally, once the timetable is solved, the periods are sorted in an ascending order, the free periods are inserted and the
whole timetable is presented in a readable form.

6. Testing
Once the timetable program was compiled and executed, it gave as output the timetables for the first and the second
year of a university degree. The program produced all the possible solutions for the two timetables.

The tests of the program were executed during or after the implementation of the program. They included testing the
correctness of the output routine, the labelling procedure, the ordering of the code and tests to ensure there were no
clashes between any booked rooms. Finally, the program was tested and was able to check the feasibility of a given
timetable.

7. Conclusions
This work has solved the timetable problem using the Constraint Logic Programming language ECLiPSe. The time
taken to implement, debug and test the program was about ten weeks. The timetable was implemented successfully,
giving correct results.

The use of ECLiPSe proved to be very useful, since it could produce complicated timetables in very short time (in
terms of seconds). However, ECLiPSe could not be used to implement the optional constraints, that would be very
important in real-life timetables. This could however be implemented in the future by using Hierarchical Constraint
Logic Programming.
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