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Abstract. The university course timetabling problem is a typical com-
binatorial optimization problem. This paper tackles the multi-objective
university course timetabling problem (MOUCTP) and proposes a guided
search non-dominated sorting genetic algorithm to solve the MOUCTP.
The proposed algorithm integrates a guided search technique, which uses
a memory to store useful information extracted from previous good so-
lutions to guide the generation of new solutions, and two local search
schemes to enhance its performance for the MOUCTP. The experimental
results based on a set of test problems show that the proposed algorithm
is efficient for solving the MOUCTP.

1 Introduction

In the university course timetabling problem (UCTP), events (subjects, courses)
have to be set into a number of time slots and located in suitable rooms while
satisfying various constraints. The UCTP is one of the most challenging schedul-
ing problems due to its complexity and highly constrained nature. Usually, the
UCTP is NP-hard. It is very difficult to find a general and effective solver for the
UCTP due to the diversity of the problem and variance of constraints from insti-
tute to institute. Researchers have proposed various approaches, e.g., constraint-
based methods, population-based methods, meta-heuristic, and hyper-heuristic
approaches, for timetabling. Most research has taken timetabling as a single
objective problem by combining multiple criteria into a single scalar value and
then minimising the weighted sum of constraint violations as the only objective
function. Few work has tackled the multi-objective UCTP (MOUCTP). Burke
et al. [3] proposed a hyper-heuristic approach for MOUCTPs. Carrasco and Pato
[5] used a bi-objective genetic algorithm (GA) to the class teacher timetabling
problem. Datta et al. [6] used the non-dominated sorting GA (NSGA-II) [7] as
a university class timetable optimizer. They used a bi-objective model to min-
imize the soft-constraint violations. A comprehensive review on multi-objective
evolutionary algorithms (MOEAs) can be found in [2].
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This paper proposes a guided search non-dominated sorting GA (GSNSGA)
to solve the MOUCTP. GSNSGA integrates a guided search technique [9] and
local search (LS) techniques into NSGA-II to solve the MOUCTP. NSGA-II [7] is
chosen since it has been successfully used for multi-objective problems in different
fields, including timetabling [5]. The guided search technique is used to create
offspring to increase the rate of highly fit individuals in the population that lead
NSGA-II to find the non-dominated set of solutions and LS techniques are used
to enhance the performance of GSNSGA by encouraging better convergence
and discovering any missing trade-off space. Experimental results on a set of
MOUCTP instances show that GSNSGA is a good solver for the MOUCTP.

2 Description of the MOUCTP

The real-world UCTP consists of different constraints: some are hard constraints
and some are soft constraints. Hard constraints must not be violated under any
circumstances, e.g., a student cannot attend two events at the same time. Soft
constraints should preferably be satisfied, e.g., a student should not attend more
than two events in a row. It is very tough or even impossible to satisfy all the soft
constraints [6]. This requires us to treat the scheduling of timetable as finding
solutions over hard constraints, and optimize them over soft constraints [14].

In this paper, we will test algorithms on the problem instances discussed in
[13]. These instances are dealt with as the MOUCTP due to the lack of MOUCTP
benchmarks in the literature. We deal with the following hard constraints:

– No student attends more than one events at the same time;
– The room is big enough for all the attending students;
– The room satisfies all the features required by the event;
– Only one event is in a room at any time slot.

There are also soft constraints, which are equally penalized by the number
of their violations and are described as follows:

– A student has an event in the last time slot of a day;
– A student attends more than two events consecutively;
– A student has a single event on a day.

The number of violations of each of the above three kinds of soft constraints
can be taken as one objective function to be minimized. Hence, we have three
objective functions, f1(x), f2(x), and f3(x), which are associated with the above
three kinds of soft constraints, respectively, in the MOUCTP in this paper.

In a UCTP, we assign an event (course, lecture) into a time slot and also
assign a number of resources (students and rooms) such that there is no conflict
between the rooms, time slots, and events. The UCTP consists of a set of n events
E = {e1, e2, ..., en} to be scheduled into a set of 45 time slots T = {t1, t2, ..., t45}
(9 for each day in a five-day week), a set of m rooms R = {r1, r2, ..., rm} in
which events can take place, a set of k students S = {s1, s2, ..., sk} who attend
the events, and a set of l available features F = {f1, f2, ..., fl} that are satisfied
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Algorithm 1 Guided Search Non-dominated Sorting Genetic Algorithm
1: input: A problem instance I

2: initialise a population P of N solutions
3: apply local search schemes LS1 and LS2 for individuals in P
4: evaluate individuals in P

5: assign rank and crowding distance for individuals in P
6: create data structures
7: set the generation counter g := 0
8: while the termination condition is not reached do

9: if (g mod τ) == 0 then

10: apply ConstructMEM() to construct data structures
11: create a child population Q using GuidedSearch() or Crossover() with a probability γ

12: apply mutation on individuals in Q with a probability Pm

13: apply local search schemes LS1 and LS2 for individuals in Q
14: evaluate the child individuals in Q

15: merge P and Q and assign rank and crowding distance for individuals
16: select a new population from the merge of P and Q based on rank and crowding distance
17: g := g + 1
18: output: A non-dominated set of solutions

by rooms and required by events [13]. In addition, the inter-relationships between
these sets are given by five matrices, see [9, 13] for details.

Usually, a matrix is used for assigning each event to a room ri and a time
slot ti. Each pair of (ri, ti) is assigned a particular number which corresponds to
an event. If a room ri in a time slot ti is free or no event is placed, then “-1” is
assigned to that pair. This way, we assure that there will be no more than one
event assigned to the same pair so that one of the hard constraint will always
been satisfied. For room assignment, we use a matching algorithm described in
[13]. For every time slot, there is a list of events taking place in it and a pre-
processed list of possible rooms to which the placement of events can occur.
The matching algorithm uses a deterministic network flow algorithm and gives
the maximum cardinality matching between rooms and events. A solution to a
UCTP can be represented as an ordered list of pairs (ri, ti), of which the index
of each pair is the identification number of an event ei ∈ E (i = 1, 2, · · · , n). For
example, the time slots and rooms are allocated to events in an ordered list of
pairs like: (2, 4), (3, 30), · · · , (2, 7), where room 2 and time slot 4 are allocated to
event 1, room 3 and time slot 30 are allocated to event 2, and so on.

3 The Proposed GSNSGA for the MOUCTP

The framework of GSNSGA, as shown in Algorithm 1, is based on NSGA-II
[7]. Initially, a population P of N individuals are randomly generated. For each
individual, each event is assigned a random time slot and a room via the matching
algorithm. As random solutions have a low chance to be feasible, two LS methods,
denoted LS1 and LS2, are used to convert them into feasible or near-feasible
solutions. Then, the individuals in P is ranked by the non-dominated sorting as
described in [7]. For each individual Ii ∈ P , we calculate the domination count
ni (the number of solutions in P which dominate Ii) and the set Si of solutions
that Ii dominates. Then, we construct the Pareto fronts from the population
round by round as follows. All solutions with ni = 0 form the first Pareto front.
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For each solution Ii in the first Pareto front, we check each member in the set
Si and reduce its domination count value by one. If the domination count of
a member becomes zero, we put it into a list L. After this round of checking,
all the members in L form the second Pareto front. The above checking and
ranking procedure continues until all Pareto fronts are identified. After ranking,
the crowding distance [7] of each front is calculated, which is used for the density
estimation for each individual. The crowding distance of a solution Ii is the
average side-length of the cube that encloses the solution without including
any other individuals in the population. After assigning ranks and crowding
distances, GSNSGA constructs three data structures MEMi (i = 1, 2, 3) to
store useful information from the best individuals of the population, which are
used to guide the generation of offspring for the following generations.

In each generation, a child population Q is first generated using the data
structures MEMi (i = 1, 2, 3) or crossover, depending on a probability γ. If
crossover is applied, we select two parents according to the rank and crowd-
ing distance from the parent population P and apply crossover on them. After
that, we perform mutation with a probability Pm. Mutation applies a randomly
selected neighbourhood structure N1, N2, N3, or N4 to make a move. After
mutation, we merge populations Q and P , assign rank and crowding distances
for individuals as above, and select the best N solutions based on the ranks
and crowding distances to form the population of next generation. The iteration
continues until a stop condition is reached, e.g., a time limit tmax is reached.

The key components of GSNSGA, including the LS schemes, the data struc-
tures, and the guided search strategy, are described respectively as follows.

3.1 The LS Schemes (LS1 and LS2)

In GSNSGA, two LS schemes (LS1 and LS2) are used orderly on each individual
in the initial population as well as after a child is created through crossover or
the MEM data structure and mutation. The first scheme (LS1), as shown in
Algorithm 2, is based on the LS scheme used in [13] with the extension of an
additional neighbourhood. LS1 works in two steps based on four neighbourhood
structures, denoted as N1, N2, N3, and N4, respectively, where N1 is defined
by an operator that moves one event from a time slot to a different one, N2 is
defined by an operator that swaps the time slots of two events, N3 is defined by
an operator that permutes three events in three distinct time slots in one of the
two possible ways other than the existing permutation of the three events, and
N4 is defined by an operator that swaps the time slots of two consecutive events
with the time slots of another two consecutive events.

In the first step (lines 2-9 in Algorithm 2), LS1 checks the hard-constraint
violations of each event while ignoring its soft-constraint violations. If there are
hard-constraint violations for an event, LS tries to resolve them by applying
moves in the neighbourhood structures N1, N2, N3, and N4 orderly, until an
improvement is reached or the maximum number of steps smax is reached, which
is set to different values for different problem instances. After each move, we
apply the matching algorithm to the time slots affected by the move and try to



A Guided Search NSGA for Multi-Objective University Course Timetabling 5

Algorithm 2 Local Search Scheme 1 (LS1)

1: input : Individual I from the population
2: for each event ei ∈ E do

3: if event ei is infeasible then

4: if there is untried move left then

5: calculate the moves: first N1, then N2 if N1 fails, then N3 if N2 also fails, and finally
N4 if N3 also fails

6: apply the matching algorithm to the time slots affected by the move to allocate rooms
for events

7: delta evaluate the result of the move
8: if moves reduce hard constraints violation then

9: make the moves and go to line 4
10: if no any hard-constraint violations remain then

11: for each event ei ∈ E do

12: if event ei has soft constraint violation then

13: if there is untried move left then

14: calculate the moves: first N1, then N2 if N1 fails, then N3 if N2 also fails, and finally
N4 if N3 also fails

15: apply the matching algorithm to the time slots affected by the move to allocate
rooms for events

16: delta evaluate the result of the move
17: if moves reduce soft-constraint violations then

18: make the moves and go to line 13
19: output : A possibly improved individual I

Algorithm 3 Local Search Scheme 2 (LS2)

1: input : Individual I after LS1 is applied
2: while the termination condition is not reached do

3: S := randomly select a preset percentage of time slots from the total time slots of T
4: for each time slot ti ∈ S do

5: for each event j in time slot ti do

6: calculate the penalty value of event j

7: sum the total penalty value of events in time slot ti
8: select the time slot wt with the biggest penalty value from S

9: for each event i in wt do

10: calculate a move of event i in the neighbourhood structure N1
11: apply the matching algorithm to the time slots affected by the move
12: compute the penalty of event i and delta evaluate the result
13: if all the moves together reduce hard or soft constraint violations then

14: apply the moves
15: else

16: delete the moves
17: output : A possibly improved individual I

resolve the room allocation disturbance and delta-evaluate the result of the move
(i.e., calculate the hard- and soft-constraint violations before and after the move).
If there is no untried move left in the neighbourhood for an event, LS1 continues
to the next event. After applying all neighbourhood moves on each event, LS1
will perform the second step (lines 10-18 in Algorithm 2). In the second step,
after reaching a feasible solution, LS performs a similar process as in the first
step on each event to reduce its soft-constraint violations without violating hard
constraints. When LS1 finishes, we get a possibly improved feasible individual.

LS2, as shown in Algorithm 3, is used immediately after LS1 on an individual.
The basic idea of LS2 is to choose a high penalty time slot that may have a
large number of events involving hard- and soft-constraint violations and try to
reduce the penalty values of involved events. LS2 first randomly selects a preset
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Fig. 1. Illustration of the data structure MEMi (i = 1, 2, 3).

percentage of time slots3 (e.g., 30% as used in this paper) from the total time
slots of T . Then, it calculates the penalty of each selected time slot4 and chooses
the worst time slot wt that has the biggest penalty value for local search as
follows: LS2 tries a move in the neighbourhood N1 for each event of wt and
checks the penalty value of each event before and after applying the move. If
all the moves in wt together reduce the hard- and/or soft-constraint violations,
then we apply the moves; otherwise, we do not apply the moves. This way, LS2
can not only check the worst time slot but also reduce the penalty value for some
events by moving them to other time slots.

3.2 Data Structures MEMi (i = 1, 2, 3)

Usually, it is assumed that elitism and diversity preservation mechanisms im-
prove the performance of MOEAs [2]. In GSNSGA, we also create extra data
structures (memories) to preserve best parts of individuals to guide the gener-
ation of offspring. We create three data structures, each of which stores useful
information according to one of the three objectives. Figure 1 shows the data
structure MEMi (i = 1, 2, 3), associated with the i-th objective. In MEMi,
there is a list of events and each event ek has again a list lek of room and time
slot pairs. In Fig. 1, Nk represents the total number of pairs in the list lek . The
data structures are regularly reconstructed, e.g., every τ generations.

Algorithm 4 shows the outline of the (re-)construction of the data structures.
When the data structures are due to be (re-)constructed, we first select α best
individuals from the population P to form a set Q. After that, for each individual
Ij ∈ Q, we check its objective values. If any of its objectives, say fi(Ij), has a
zero value, then each event of Ij is checked by its penalty value (hard and soft

3 Rather than choosing the worst time slot out of all the time slots, we randomly select
a set of time slots and then choose the worst time slot. This is because for each
selected time slot we need to calculate its penalty value, which is time-consuming.
By selecting a set of time slots instead of all time slots, we try to balance between
the computational time and the quality of the algorithm.

4 The penalty of a time slot is the sum of the penalty values of all the events that
occur in the time slot.
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Algorithm 4 ConstructMEM() – Constructing data structures

1: input : The whole population P

2: Q← select the best α individuals in P
3: for each individual Ij in Q do

4: for each objective i do

5: if fi(Ij) = 0 then

6: for each event ek in Ij do

7: calculate the penalty value of event ek from Ij
8: if ek is feasible (i.e., ek has zero constraint violation) then

9: add the pair of room and time slot (rek , tek ) assigned to ek into the list lek in
MEMi

10: output : The updated data structures MEMi (i = 1, 2, 3)

constraints associated with this event). If an event has a zero penalty value, then
we store the information corresponding to this event into corresponding data
structure MEMi. For example, for an individual Ij ∈ Q, assuming f1(Ij) = 0,
which means no students have a class in the last time slot of a day in the solution
Ij , if the event e2 of Ij is assigned room 2 at time slot 13 and has a zero penalty
value, then we add the pair (2, 13) into the list le2 in MEM1. Similarly, the
events of the next individual Ij+1 ∈ Q are checked by their penalty values. If
f1(Ij+1) = 0 and the event e2 in Ij+1 has a zero penalty, then we add the pair of
room and time slot assigned to e2 in Ij+1 into the existing list le2 in MEM1. If an
event em in an individual Ik ∈ Q with f1(Ik) = 0 has a zero penalty and there is
no list lem existing in MEM1 yet, then the list lem is added into MEMi. Similar
process is carried out for each individual in Q. Finally, MEMi stores a list of
pairs of room and time slot for each event with a zero penalty corresponding to
the best individuals of the population regarding the i-th objective.

The data structures are then used to generate offspring for the next τ gener-
ations before re-constructed. We update the data structures every τ generations
instead of every generation in order to make a balance between the solution
quality and the computational time cost.

3.3 Generating a Child by the Guided Search Strategy

In GSNSGA, a child population is created by the guided search strategy or
crossover with a probability γ. That is, when a child is to be generated, a random
number ρ ∈ [0.0, 1.0] is first generated. If ρ < γ, the guided search strategy is
used to generate the child; otherwise, a crossover operation is used to generate
the child. If a child is to be created by the guided search strategy, we first
randomly select one data structure MEMi and then apply Algorithm 5.

In Algorithm 5, we first select a set Es of β∗n random events to be generated
from MEMi. Here, β is the percentage of the total number of events. After that,
for each event ek in Es, we randomly select a pair (rek , tek) from the list lek in
MEMi that corresponds to the event ek and assign the selected pair to ek for
the child. If an event ek in Es has no list lek in MEMi, then we randomly assign
a room and a time slot from possible rooms and time slots to ek for the child.
This process is carried out for all events in Es. For those remaining events not
present in Es, available rooms and time slots are randomly assigned to them.
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Algorithm 5 GuidedSearch(MEMi) – Generating a child from MEMi

1: input : The MEMi data structure
2: Es := randomly select β ∗ n events
3: for each event ei in Es do

4: randomly select a pair of room and time slot from the list lei
5: assign the selected pair to event ei for the child
6: for each remaining event ei not in Es do

7: assign a random time slot and room to event ei
8: output : A child generated using the MEMi data structure

Table 1. Three groups of problem instances

Class Small Medium Large

Number of events 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Approximate features per room 3 3 5
Percentage (%) of features used 70 80 90
Number of students 80 200 400
Maximum events per student 20 20 20
Maximum students per event 20 50 100

4 Experimental Study

In this section, we experimentally investigate the performance of GSNSGA and
NSGA-II [7] for the MOUCTP. The program was coded in GNU C++ with ver-
sion 4.1 and run on a 3.20 GHz PC. We use a set of benchmark problem instances
to test the algorithms, which were proposed for the timetabling competition, see
[8]. Table 1 represents the data of the UCTP instances of three different groups:
5 small instances, 5 medium instances, and 1 large instance. According to our
preliminary experiments, the parameters for GSNSGA and NSGA-II were set as
follows: N = 50, α = 0.2 ∗N = 10, β = 0.4, γ = 0.6, τ = 30, and Pm = 0.6. In
the initialisation of the population, the maximum number of steps per LS oper-
ation smax was set to 300 for small instances, 1500 for medium instances, and
2500 for the large instance, respectively. There were 20 runs of each algorithm
on each problem instance. For each run, the maximum run time tmax was set to
100 seconds for small instances, 1000 seconds for medium instances, and 10000
seconds for the large instance.

Firstly, we compare the performance of GSNSGA and NSGA-II regarding
the three objective values. The experimental results are shown in Table 2, where
S1 to S5 denote small instance 1 to small instance 5, M1 to M5 denote medium
instance 1 to medium instance 5, and L denotes the large instance, respectively.
In Table 2, “Best”, “Average”, and “Std” mean the best, average, and standard
deviation of the three objective values over 20 runs, respectively, “ln” means
that over 50% of the results are infeasible. The objective function values of
GSNSGA on all problem instances are much smaller than the values for NSGA-
II. This shows that local and guided search help the algorithm to find different
or unexplored regions of the search space and try to lead the algorithm to global
optimum. Figure 2 shows the 3-D and 2-D projections of the objective functions
of Pareto front of NSGA-II and GSNSGA on S1 and M1, respectively. The scale
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Table 2. Results of NSGA-II and GSNSGA regarding the three objective values

Algo MOUCTP Best Average Std
f1 f2 f3 f1 f2 f3 f1 f2 f3

NSGA-II s1 4 5 59 9.43 23.22 87.61 2.23 11.82 11.72
s2 5 3 72 9.17 21.83 90.94 2.09 9.01 10.01
s3 5 3 72 8.52 24.42 85.79 2.48 12.31 8.75
s4 4 1 91 8.88 7.54 111.74 2.07 4.6 13.11
s5 6 22 52 9.71 48.54 72.06 1.96 15.01 10.82
m1 38 249 61 44.24 312.78 81.94 2.82 28.29 8.27
m2 38 277 61 44.67 317.25 82.46 2.93 19.93 8.36
m3 38 277 58 44.06 346.92 80.94 3.5 26.95 8.47
m4 38 234 66 44.23 309.79 80.73 2.87 30.09 8.54
m5 38 234 66 44.23 309.79 80.73 2.87 30.09 8.54
l ln ln ln ln ln ln ln ln ln

GSNSGA s1 0 0 0 1.33 6.74 9.91 0.94 3.9 4.66
s2 0 0 0 1.63 5.75 5.9 1.35 4.12 3.51
s3 0 0 0 0.65 2.06 7.38 0.76 2.17 5.51
s4 0 0 0 1.02 1.14 20.46 0.93 1.48 8.86
s5 0 0 0 1.52 2.04 15.1 1.52 2.22 6.84
m1 3 95 15 8.74 138.76 32.52 3.75 23.25 11.55
m2 7 94 3 13 176.6 21 2.73 24.68 6.73
m3 1 95 5 6.9 145.81 16.69 2.33 20.29 7.88
m4 0 38 2 7.15 88.81 22.38 5.36 20.29 15.44
m5 5 94 15 23.15 150.4 43.15 9.72 25.71 9.72
l 30 221 89 39.72 345.94 124.64 5.46 73.62 21.1

of Fig. 2 is based upon the objective values of non-dominated solutions. From
Fig. 2, it can be seen that there is a huge difference between the objective values
of the two algorithms. For example, on M1, the minimal f3(x) value of NSGA-II
is greater than the maximal f3(x) value of GSNSGA.

Secondly, we compare the performance of NSGA-II and GSNSGA regarding
some other performance measures used for MOEAs. As the true Pareto front
of the problems is unknown, we use two performance measures, hypervolume
[15] and D metric [15], which are not based on the true Pareto front. The first
measure concerns the size of the objective space which is covered by a set of non-
dominated solutions. The higher the value, the larger the dominated volume in
the objective space and hence the better an algorithm’s performance. The D
metric measure between two non-dominated sets A and B gives the relative size
of the region in the objective space that is dominated by A but not by B, and vice
versa. It also gives information about whether either set totally dominates the
other set, e.g., D(A,B) = 0 and D(B,A) > 0 means that A is totally dominated
by B. Since in this paper the focus is on finding the Pareto optimal set rather
than obtaining a uniform distribution over a trade-off surface, we do not consider
the online performance of MOEAs but consider the offline performance. Hence,
the Pareto optimal set regarding all individuals generated over all generations is
taken as the output of a MOEA. The performance of a particular algorithm on
a test problem was calculated by averaging over all 20 runs.

Table 3 shows the values of the hypervolume and D metric of NSGA-II and
GSNSGA on the test instances. It can be seen that GSNSGA covers a larger
objective value space compared with NSGA-II on all problem instances. It is also
evident from the D metric values that there is no objective space that GSNSGA
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Fig. 2. Comparison of NSGA-II and GSNSGA regarding the three objective values

Table 3. Comparison of algorithms regarding the hypervolume and D metric measures

Hypervolume D metric
MOUCTP NSGA-II GSNSGA NSGA-II vs GSNSGA GSNSGA vs NSGA-II

S1 5.3× 106 8.0× 106 0 7.8× 106

S2 4.8× 106 7.9× 106 0 7.5× 106

S3 4.8× 106 8.0× 106 0 7.4× 106

S4 4.2× 106 7.0× 106 0 6.8× 106

S5 5.0× 106 7.9× 106 0 7.6× 106

M1 5.0× 107 9.7× 107 0 9.5× 107

M2 4.4× 107 9.4× 107 0 9.3× 107

M3 4.5× 107 9.9× 107 0 9.4× 107

M4 5.3× 107 1.1× 108 0 9.2× 107

M5 5.1× 107 9.4× 107 0 9.3× 107

L − 3.1× 108 − −
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Table 4. Comparison of GSNSGA and other algorithms on the test problem instances

GSNSGA GSGA TSRW VNS GBHH EGD NLGD
MOUCTP Best Best Best Best Best Best Best

S1 0 0 0 0 6 0 3
S2 0 0 - 0 7 0 4
S3 0 0 – 0 3 0 6
S4 0 0 – 0 3 0 6
S5 0 0 – 0 4 0 0

M1 113 240 – 317 372 80 140
M2 104 160 173 313 419 105 130
M3 101 242 224 357 359 139 189
M4 42 158 160 247 348 88 112
M5 114 124 – 292 171 88 141
L 340 801 – ln 1068 730 873

is dominated by NSGA-II. On all test problems, GSNSGA outperformed NSGA-
II regarding the two performance measures.

Thirdly, a comparison of GSNSGA with other published results was also
conducted in order to assess the effectiveness of GSNSGA against other optimi-
sation methods. Since most published results are based on the single objective
UCTP, we also compare the results of GSNSGA by aggregating the three objec-
tive values into one objective. Table 4 shows the results, where “−” means no
result available in the literature, “ln” means no feasible solution for the problem
instance, and the best results among all approaches are shown in bold. In Table
4, GBHH [4] denotes a graph-based hyper-heuristics with tabu search for the
UCTP, GSGA [9] denotes the guided search GA with LS for the UCTP, VNS
[1] denotes the variable neighbourhood search, EGD [11] denotes an extended
great deluge method, NLGD [10] denotes a non-linear great deluge algorithm,
and TSRW [3] denotes the tabu search roulette wheel hyper-heuristic to solve
the three-objective UCTP. From Table 4, it can be seen that GSNSGA obtained
the best results for 9 out of 11 problem instances and the second best results for
2 problems. In summary, GSNSGA is able to produce high quality solutions no
matter how many objectives the problem has in comparison to other methods.

5 Conclusions and Future work

This paper presents a MOEA that combines guided search and LS techniques
with NSGA-II to solve the MOUCTP. NSGA-II gives good results on MOUCTPs,
but when it is integrated with the guided search and LS techniques, the improve-
ment is noticeable. The data structures introduced in GSNSGA improve the
quality of individuals by storing part of former good solutions, which otherwise
would have been lost in the selection process, and reusing the stored information
to guide the generation of offspring. This enables GSNSGA to quickly retrieve
the best solutions corresponding to previous populations. The experimental re-
sults show that GSNSGA is competitive across all test problems. It gives good
results by producing a set of non-dominated solutions for the user to choose the
most appropriate one rather than restricting to a single solution. It can also be



12 S. N. Jat and S. Yang

seen that the addition or deletion of constraints or objectives does not affect
the performance of GSNSGA much because each objective function is treated
separately. Hence, GSNSGA is appropriate for the MOUCTP.

There are several relevant future works. One would be to check the perfor-
mance of guided and local search with other MOEAs for the MOUCTP. We also
intend to test our approach on other problem instances and devise new genetic
operators and neighborhood techniques based on different problem constraints.
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