
A Memetic Algorithm for the University Course Timetabling Problem

Sadaf N. Jat

Department of Computer Science

University of Leicester

University Road, Leicester LE1 7RH, UK

snj2@le.ac.uk

Shengxiang Yang

Department of Computer Science

University of Leicester

University Road, Leicester LE1 7RH, UK

s.yang@mcs.le.ac.uk

Abstract

The design of course timetables for academic institutions
is a very hectic job due to the exponential number of possi-
ble feasible timetables with respect to the problem size. This
process involves lots of constraints that must be respected
and a huge search space to be explored, even if the size of
the problem input is not significantly large. On the other
hand, the problem itself does not have a widely approved
definition, since different institutions face different varia-
tions of the problem. This paper presents a memetic algo-
rithm that integrates two local search methods into the ge-
netic algorithm for solving the university course timetabling
problem (UCTP). These two local search methods use their
exploitive search ability to improve the explorative search
ability of genetic algorithms. The experimental results in-
dicate that the proposed memetic algorithm is efficient for
solving the UCTP.

1 Introduction

Timetabling problems are often complicated by the de-

tails of a particular task. A general algorithm approach

to a problem may turn out to be incapable for other prob-

lems because certain special constraints may be required

in a particular instance of that problem. In the univer-

sity course timetabling problem (UCTP), events (subjects,

courses) have to be set into a number of timeslots while sat-

isfying various constraints. Timetabling varies from univer-

sity to university according to the resources and constraints.

There is no known deterministic polynomial time algorithm

for the UCTP. That is, the UCTP is a NP-hard problem [15].

Conventional computer based timetabling methods con-

cern themselves more with simply finding the timetable but

these methods are insufficient to satisfy all the required con-

straints. The solution to such problems using knowledge

based or operation research based approaches is hard to de-

velop. These approaches are often slow and can be inflex-

ible because they are based on specific assumptions about

the nature of the problem.

The application of computers to timetabling problems

has a long and active history, which dates back almost as

soon as computers were first built. The first generation

of computer timetabling programs developed in the early

1960s were largely an attempt to reduce the associated ad-

ministration work. Thereafter, programs were soon pre-

sented with the aim of fitting classes and teachers to periods.

In 1964, Broder [6] and Cole [12] both presented heuris-

tic approaches to timetabling. In 1967, Welsh and Pow-

ell [26] pointed out the similarity between the timetabling

problem and the one of coloring the vertices of a graph.

Coloring the graph amounts to placing courses in appro-

priate periods. The algorithm they presented was similar

to Broder’s algorithm [6]. Researchers have proposed vari-

ous timetabling approaches by using constraint-based meth-

ods, population-based approaches (e.g., genetic algorithms

(GAs), ant colony optimization, and memetic algorithms

(MAs)), meta-heuristic methods (e.g., tabu search, simu-

lated annealing, and great deluge), variable neighbourhood

search (VNS), hybrid meta-heuristics, and hyper-heuristic

approaches, etc. In the last decade, a lot of research pa-

pers have been published. A comprehensive review on the

timetabling problem was described in [24, 13] and recent

research directions in timetabling were described in [10].

In this paper, a memetic algorithm is proposed for the

UCTP, which integrates two local search techniques into

GAs: one is based on events and the other is based on

timeslots. MAs [17] are a class of meta-heuristic methods,

which combine the population-based global search, e.g.,

GAs, with local search made by individuals [21]. We apply

two local search methods on selected individuals in order to

improve their quality. With the help of both the local search

methods, GAs become more powerful for the UCTP.

The rest of this paper is organized as follows. The next

section briefly describes the UCTP. Section 3 presents the

MA proposed in this paper for the UCTP. Experimental re-

sults of comparing the proposed MA and other algorithms

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.126

427

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.126

427

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.126

427

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from the literature are reported and discussed in Section 4.

Section 5 concludes this paper with discussions on future

work.

2 The University Course Timetabling Prob-
lem

According to Carter and Laporte [13], the UCTP is a

multi-dimensional assignment problem, in which students

and teachers (or faculty members) are assigned to courses,

course sections or classes and events (individual meetings

between students and teachers) are assigned to classrooms

and time slots.

In a UCTP, we assign an event (courses-lectures) into

a time slot and also assign a number of resources (stu-

dents,rooms) in such a way that there is no conflict between

the rooms, timeslots and events. As mentioned by Rossi-

Doria et al. [18], the UCTP problem consists of a set of n

events (classes, subjects) E = {e1, e2, ..., en} to be sched-

uled in a set of 45 timeslots T = {t1, t2, ..., t45} nine for

each day in a five day week, a set of m available rooms

R = {r1, r2, ..., rm} in which events can take place, a set

of k number of students S = {s1, s2, ..., sk} who attend the

events and a set of l available features F = {f1, f2, ..., fl}
that are satisfied by rooms and required by each event.

In addition, interrelationships between these sets are

given by five matrices. The first matrix shows which event

is attended by which students. The second matrix indicates

whether two events can be scheduled in the same timeslot

or not. The third matrix gives the features that each room

possesses. The fourth matrix gives the features required by

each event. The last matrix lists the possible rooms to which

each event can be assigned.

Usually, a matrix is used for assigning each event to a

room ri and a timeslot ti. Each pair of (ri, ti) is assigned a

particular number corresponding to an event. If a room ri in

a timeslot ti is free or no event is placed then−1 is assigned

to that pair. With this assignment we assure that there will

be no more than one event assigned to this pair so that one

of the hard constraint will always been satisfied.

For the room assignment we used a matching algorithm

described by Rossi-Doria [20]. For every timeslot, there is

a list of events taking place in it and a preprocessed list of

possible rooms to which the placement of events can be oc-

curred. The matching algorithm uses a deterministic net-

work flow algorithm and gives the maximum cardinality

matching between rooms and events.

In general, the solution to a UCTP can be represented

in the form of an ordered list of pairs (ri, ti), of which the

index of each pair is the identification number of an event

ei ∈ E (i = 1, 2, · · · , n). For example, the timeslots and

rooms are allocated to each event in an ordered list of pairs

like:

(2, 4), (3, 30), (1, 12), · · · , (2, 7),

where timeslot 4 and room 2 are allocated to event 1, times-

lot 30 and room 3 are allocated to event 2, and so on.

The real world university course timetable problem con-

sists of different constraints: some are hard constraints and

some are soft constraints. In this paper, we will test our pro-

posed algorithm on the problem instances discussed in [20].

We deal with the following hard constraints:

• No student attends more than one events at the same

time;

• The room is big enough for all the attending students

and satisfies all the features required by the event;

• Only one event is in a room at any timeslot.

There are also soft constraints which are penalised

equally by their occurrences:

• A student has a class in the last timeslot of a day;

• A student has more than two classes in a row;

• A student has a single class on a day.

The goal of the UCTP is to minimise the soft constraint

violations of a feasible solution (a feasible solution means

that no hard constraint violation exists in the solution).

3 The Proposed Memetic Algorithm

It is generally believed that MAs are successful because

they combine the explorative search ability of recombina-

tive evolutionary algorithms and the exploitive search abil-

ity of local search methods [7]. The term memetic algo-

rithm was invented by Moscato [17] from Richard Dawkin’s

[14] term “meme”. Memetic algorithms [17, 18] are a kind

of evolutionary algorithms that integrate knowledge of the

problem in the form of heuristics, approximate algorithms,

local search techniques, specialised recombination opera-

tors, and truncated exact methods, etc [23].

Many researchers have applied MAs to address

timetabling problems by combining GAs and local search

techniques, e.g., Peachter et al. [19], Rossi-Doria et al. [20,

21], Alkan and Ozcan [4], Abdullah et al. [3], and Chiaran-

dini et al. [11]. In this paper, a memetic algorithm is pro-

posed for the UCTP, which combines two local search tech-

niques into GAs. These two local search techniques are

based on three neighbourhood structures, denoted as N1,

N2, and N3. They are described as follows:

• N1: the neighbourhood defined by an operator that

moves one event from a timeslot to a different one

428428428

Algorithm 1 The proposed memetic algorithm

1: input : A problem instance I

2: for i = 1 to population size do
3: si ← random initial solution

4: si ← solution si after Local Search 1 (LS1)

5: si ← solution si after Local Search 2 (LS2)

6: end for
7: sort population by fitness

8: while termination condition not reached do
9: select two parents from population by tournament selection

10: s← child solution after crossover with a probability Pc

11: s← child solution after mutation with a probability Pm

12: s← child solution after applying Local Search 1 (LS1)

13: s← child solution after applying Local Search 2 (LS2)

14: child solution s replaces the worst member of the popula-

tion

15: sort population by fitness

16: sbest ← best solution in the population

17: end while
18: output : The best solution sbest achieved for I

• N2: the neighbourhood defined by an operator that

swaps the timeslots of two events

• N3: the neighbourhood defined by an operator that per-

mutes three events in three distinct timeslots in one of

the two possible ways other than the existing permuta-

tion of the three events.

Algorithm 1 shows the outline of the MA proposed in

this paper for the UCTP. In the MA, we first initialize the

population by randomly creating each individual (via as-

signing a random timeslot for each event according to a

uniform distribution) and applying the matching algorithm

to allocate rooms for events. Then, two local search meth-

ods, Local Search 1 (LS1) and Local Search 2 (LS2), are

applied in order to each member of the population. LS1

uses the neighbourhood structures N1, N2, and N3 to move

events to timeslots and then uses the matching algorithm

to allocate rooms to events and timeslots. With LS2, we

take the timeslot with the worst penalty value from a set of

randomly selected timeslots and try to improve it by trying

to move each event in that timeslot to another one in the

neighbourhood N1 and then using the matching algorithm

for room allocations for those involved events.

After the initialization of the population, we use the

steady state genetic algorithm model as mentioned in [11],

where only one child solution is generated with selection,

crossover and mutation at each generation. The child then

will be improved by LS1 and LS2. In the end, the worst

population member is replaced with the new child individ-

ual. The iteration continues until one termination condition

is reached, e.g., a preset time limit tmax is reached.

Algorithm 2 The procedure of Local Search 1 (LS1).

1: input : Individual I selected from the population

2: while Termination condition not reached do
3: for i = 1 to the total number of events do
4: if event i is infeasible then
5: if there is untried move left then
6: calculate the next move (first in N1, then N2, and

finally N3)

7: apply the matching algorithm to the timeslots af-

fected by the move and delta-evaluate the result.

8: if the move reduces hard constraint violation then
9: make the move and go to line 3

10: end if
11: end if
12: end if
13: end for
14: if any hard constraint violations remain then
15: end LS1 (go to line 30)

16: else
17: for i = 1 to total number of events do
18: if event i has soft constraint violation then
19: if there is untried move left then
20: calculate the next move (first in N1, then N2, and

finally N3)

21: apply the matching algorithm to the timeslots af-

fected by the move and delta-evaluate the result

22: if the move reduces soft constraints violation

then
23: make the move and go to line 17

24: end if
25: end if
26: end if
27: end for
28: end if
29: end while
30: output : A possibly improved individual I

3.1 Local Search 1

Algorithm 2 summarises Local Search 1 (LS1). LS1

works on all events. Here, we suppose that each event is

involved in soft and hard constraint violations. LS1 works

in two steps. In the first step (line 3-13 in Algorithm 2),

it checks the hard constraint violations of each event while

ignoring its soft constraint violations. If there are hard con-

straint violations for an event, LS1 tries to resolve them by

applying moves in the neighbourhood structures N1, N2,

and N3 in order1 until a termination condition is reached,

e.g., an improvement is reached or the maximum number

1For the event being considered, potential moves are calculated in a

strict order. First, we try to move the event to the next timeslot, then the

next, then the next, etc. If this search in N1 fails, we then search in N2

by trying to swap the event with the next one in the list, then the next one,

and so on. If the search in N2 also fails, we try a move in N3 by using one

different permutation formed by the event with the next two events, then

with the next two, and so on.

429429429

Algorithm 3 The procedure of Local Search 2 (LS2)

1: input : Individual I after LS1 is applied

2: S := randomly select a preset percentage of timeslots from

the total timeslots of T

3: for each timeslot ti ∈ S do
4: for each event j in timeslot ti do
5: calculate the penalty value of event j

6: end for
7: sum the total penalty value of events in timeslot ti

8: end for
9: select the timeslot wt with the biggest penalty value from S

10: for each event i in wt do
11: calculate a move of event i in the neighbourhood structure

N1

12: apply the matching algorithm to the timeslots affected by

the move

13: compute the penalty of event i and delta-evaluate the result

14: end for
15: if all the moves together reduce hard or soft constraint viola-

tions then
16: apply the moves

17: else
18: delete the moves

19: end if
20: output : A possibly improved individual I

of steps smax is reached, which is set to different values

for different problem instances. After each move, we ap-

ply the matching algorithm to the timeslots affected by the

move and try to resolve the room allocation disturbance and

delta-evaluate the result of the move (i.e., calculate the hard

and soft constraint violations before and after the move).

If there is no untried move left in the neighbourhood for

an event, LS1 continues to the next event. After apply-

ing all neighbourhood moves on each event, if there is still

any hard constraint violation, then LS1 will stop; otherwise,

LS1 will perform the second step (line 17-27 in Algorithm

2).

In the second step, after reaching the state of a feasible

solution, LS1 then deals with soft constraints and again per-

forms a similar process as in the first step on each event to

reduce its soft constraint violations. For each event, LS1

tries to make moves in the neighbourhood N1, N2 and N3

in order without violating the hard constraints. For each

move, the matching algorithm is applied to allocate rooms

to affected events and the result is delta-evaluated. When

LS1 finishes, we get a possibly improved and feasible indi-

vidual. After that, we apply LS2 on this individual.

3.2 Local Search 2

Algorithm 3 shows the pseudo-code of Local Search 2

(LS2). The basic idea of LS2 is to choose a high penalty

timeslot that may have a large number of events involving

hard and soft constraints. LS2 first randomly selects a preset

percentage of timeslots2 (e.g., 20% as used in this paper)

from the total timeslots of T . Then, it computes the penalty

of each selected timeslot and chooses the timeslot wt that

has the biggest penalty value for local search. In this way,

LS2 aims to help improve the existing result of LS1.

After taking the worst timeslot, LS2 tries a move in the

neighbourhood N1 for each event of wt and checks the

penalty value of each event before and after applying the

move. If all moves in wt together reduce the hard and/or

soft constraint violations, then we apply all the moves; oth-

erwise, we do not make the moves. In this way, LS2 can not

only check the worst timeslot but also reduce the penalty

value for some events by moving them to other timeslots.

In general, LS2 can enhance the individuals of the popu-

lation and increase the quality of the feasible timetable by

reducing the number of constraint violations.

3.3 Genetic Operators

The proposed MA uses the steady-state GA model. One

offspring is generated from the current population at each

generation using the following genetic operators and rele-

vant parameters, which were also used in [20].

Selection: Tournament selection of size 2 is used, where

two parents are randomly selected from the population and

the fitter one is used as a parent. At each generation, the

tournament selection is applied twice to select two parents

for reproduction.

Crossover: A uniform crossover operator is used with a

probability Pc = 0.8. It first assigns to each event in the off-

spring a timeslot from one of the two parents randomly and

then allocates rooms to events in each non-empty timeslot.

Mutation: A mutation operator is used with a probability

Pm = 0.5. It randomly selects a neighbourhood structure

N1, N2, or N3, and makes a move in the selected neigh-

bourhood to mutate an individual.

4 Experimental Study

The program is coded in GNU C++ with version 4.1 and

run on a 3.20 GHz PC. We use a set of benchmark prob-

lem instances to test our algorithm, which were proposed by

Ben Paechter for the timetabling competition, see [22]. Al-

though these problem instances lack many of the real world

problem constraints and issues [16], they allow comparison

of our approach with current state of the art techniques on

these instances.

2Rather than choosing a worst timeslot out of all the timeslots, we ran-

domly select a set of timeslots and then choose the worst time slot. This is

because for each selected timeslot we need to calculate its penalty value,

which costs time. Via selecting a set of timeslots instead of all timeslots,

we try to balance between the computational time and the quality of the

algorithm.

430430430

Table 1. Three groups of problem instances

Class Small Medium Large

Number of events 100 400 400

Number of rooms 5 10 10

Number of features 5 5 10

Per room approximate features 3 3 5

Percentage (%) of features used 70 80 90

Number of students 80 200 400

Maximum events per student 20 20 20

Maximum students per event 20 50 100

Table 2. Comparison of algorithms on small and medium problem instances

Datasets MA RIIA HEA GBHH VNS THHS LS EA AA FA

Best Median Best Median Best Best Best Best Median Best Median Best

S1 0 0 0 0 0 6 0 1 8 0 1 10

S2 0 0 0 0 0 7 0 2 11 3 3 9

S3 0 0 0 0 0 3 0 0 8 0 1 7

S4 0 0 0 0 0 3 0 1 7 0 1 17

S5 0 0 0 0 0 4 0 0 5 0 0 7

M1 227 229.5 242 245 221 372 317 146 199 280 195 243

M2 180 185 161 162.6 147 419 313 173 202.5 188 184 325

M3 235 238.5 265 267.8 246 359 357 267 77.5%In 249 248 249

M4 142 155 181 183.6 165 348 247 169 177.5 247 164.5 285

M5 200 203 151 152.6 130 171 292 303 100%In 232 219.5 132

Table 1 represents the data of timetabling problem in-

stances of three different groups: 5 small instances, 5

medium instances, and 1 large instance. In LS1 of our MA,

the maximum number of steps per local search smax is set

to different values for different problem instances (200 for

small instances, 1000 for medium instances, and 2000 for

the large instance). There were 50 runs of the algorithm

for each problem instance. For each run, the maximum run

time tmax was set to 90 seconds for small instances, 900

seconds for medium instances, and 9000 seconds for the

large instance.

We compare our MA with other algorithms on the 11

timetabling problem instances. Table 2 gives the compar-

ison of the experimental results of our algorithm with the

available results of other algorithms in the literature on the

small and medium timetabling problem instances. In the

table, S1 represents small instance 1, S2 represents small

instance 2, and so on, and M1 represents medium problem

instance 1, M2 represents medium problem instance 2, and

so on. In Table 2, the term ”%ln” represents the percent-

age of runs that failed to obtain a feasible solution. The

“Best” indicates the best result among a number of runs.

We present the best of all the algorithms in the bold font.

The algorithms compared in the table are described as fol-

lows:

• MA: our memetic algorithm approach

• RIIA: The randomised iterative improvement method

by Abdullah et al. [1]. This paper presented a compos-

ite neighbourhood structure with a randomised itera-

tive improvement algorithm.

• VNS: The variable neighbourhood search by Abdullah

et al. [2]. In this paper they used a variable neighbour-

hood search approach based on the random-descent lo-

cal search with an exponential Monte Carlo acceptance

criteria.

• THHS: The tabu-based hyper-heuristic search by

Burke et al. [8]. They introduced a tabu-search hy-

per heuristics where a set of low level heuristics com-

pete with each other and this approach is tested on the

course timetabling and nurse rostering problems.

• EA: The evolutionary algorithm by Rossi-Doria et

al. [20]. They used an evolutionary algorithm with lo-

cal search to solve the UCTP and also compared sev-

eral metaheuristics methods on the UCTP.

• HEA: The hybrid evolutionary algorithm by Abdul-

lah et al. [3]. They tested a light mutation operator

431431431

Table 3. The t-test results of comparing MA against EA.

function S1 S2 S3 S4 S5

t-test 8.4524 9.9812 7.9047 7.754 4.334

function M1 M2 M3 M4 M5

t-test 9.5912 14.9345 9.6104 19.938 8.8526

followed by a randomised iterative improvement algo-

rithm on the UCTP.

• LS: The local search method by Socha et al. [25]. They

used a random restart local search for UCTP and com-

pare with an ant algorithm.

• AA: The ant algorithm is used by Socha et al. [25].

They developed a first ant colony optimization al-

gorithm with the help of construction graph and a

pheromone model appropriate for the university course

timetabling.

• FA: The fuzzy algorithm by Asmuni et al. [5]. In this

paper they focused on the issue of ordering events by

simultaneously considering three different heuristics

using fuzzy methods.

• GBHH: The graph-based hyper heuristic by Burke

et al. [9]. They employed tabu search with graph-

based hyper-heuristics on the UCTP and examination

timetabling problems.

From Table 2, it can be seen that our proposed MA is bet-

ter than the fuzzy algorithm [5] and graph based approach

[9] on 9 out of the 10 small and medium problem instances

(except on M5). Our algorithm also obtained better results

than VNS [2] and EA [20] on all of the medium problem

instances and tied on some or all of the small problem in-

stances. It also gives better results than local search [25] on

9 of the 10 problem instances and is better than the ant al-

gorithm [25] on 7 of the data set (with one tie on S5). When

comparing with the result of hybrid evolutionary approach

[3] and RIIA [1], it is quite interesting that our approach is

better on 3 of the same medium problem instances (except

on M2 and M5) and ties on all small problems. Finally, the

results of our approach are better than the tabu-based hyper

heuristic search [8] on most of the problem instances.

The proposed MA did not achieve a feasible result on

the large instance within the running time of 9000 seconds

within 50 runs. On this large instance, other algorithms

from the literature also failed to give a feasible result ex-

cept [9], [3], [25], and [5]. This result indicates that the

neighbourhood structures may need further improvement to

give feasible results for the large instance.

The results of the statistical comparison of our MA

against the EA by Rossi-Doria et al. [20] using the t-test

are shown in Table 3. The t-test result is based on 50 runs

of their EA and our MA on small and medium instances.

The t-test is carried out with 98 degree of freedom at a 0.05

level of significance. It can be seen that the performance of

our proposed MA is significantly better than the EA. MA

works more efficiently as compared to the EA and gives a

better performance on all small and medium problems.

To summarise, the performance of our memetic algo-

rithm was tested on the benchmark problems [22] and when

compared with other published work, it can be seen that

our proposed GA with local search is capable of producing

some of the best results.

5 Conclusions and Future Work

This paper presents a MA for solving the university

course timetabling problem. The MA combines the GA

with two local search techniques. With only the first lo-

cal search, GA does not perform well in the experiments as

mentioned in [20]. But we have enhanced the functional-

ity of the GA by introducing a second local search method.

Based on the experimental results, it is clear that, with the

help of the powerful local search methods, the proposed

MA can obtain high quality solutions that satisfy different

kinds of timetabling constraints. The proposed MA is ca-

pable of finding a near optimal solutions for the test prob-

lems. These results also show that by integrating appropri-

ate neighbourhood moves, GAs can get the best solutions

for the UCTP.

In the future, more work needs to be done by improv-

ing the genetic operator or developing new neighbourhood

techniques based on different problem constraints because

we believe that MAs can be improved by applying advanced

genetic operators, heuristics, and evaluation routines. The

inter-relationship of these techniques and proper placement

of these techniques in an algorithm may furthermore lead to

better results.

References

[1] S. Abdullah, E. K. Burke, and B. McCollum. Using a ran-

domised iterative improvement algorithm with composite

neighbourhood structures. Proc of the 6th Int Conf on Meta-
heuristic, pp. 153-169, 2007.

432432432

[2] S. Abdullah, E. K. Burke, and B. McCollum. An investiga-

tion of variable neighbourhood search for university course

timetabling. Proc of the 2nd Multidisciplinary Conf on
Scheduling: Theory and Applications, pp. 413–427, 2005.

[3] S. Abdullah, E. K. Burke, and B. McCollum. A Hybrid Evo-

lutionary Approach to the University Course Timetabling

Problem. Proc of the 2007 IEEE Congres on Evol Comput.,
pp. 1764–1768, 2007.

[4] A. Alkan and E. Ozcan. Memetic algorithms for timetabling

evolutionary computation. Proc of the 2003 IEEE Congress
on Evol Comput., vol. 3, pp. 1796–1802, 2003.

[5] H. Asmuni, E. K. Burke, and J. M. Garibaldi. Fuzzy Multi-

ple Heuristic Ordering for Course Timetabling. Proc of the
5th UK Workshop on Comput Intell., pp. 302-309, 2005.

[6] S. Broder. Final examination scheduling. Comm of the ACM,

7(8): 494–498, 1964.

[7] E. K. Burke and D. J. Landa Silva. The design of memetic

algorithms for scheduling and timetabling problems. In

N. Krasnogor, W. Hart, and J. Smith (eds.), Recent Advances
in Memetic Algorithms, Studies in Fuzziness and Soft Com-
puting, vol. 166, pp. 289–312, 2004.

[8] E. K. Burke, G. Kendall, and E. Soubeiga. A tabu-search

hyper-heuristic for timetabling and rostering. Journal of
Heuristics, 9(6): 451–470, 2003.

[9] E. K. Burke, B. MacCloumn, A. Meisels, S. Petrovic, and

R. Qu. A Graph-based hyper heuristic for timetabling prob-

lems. European J of Oper Research, 176: 177–192, 2006.

[10] E. K. Burke and S. Petrovic. Recent research directions

in automated timetabling. European J of Oper Research,

140(2): 266-280, 2002.

[11] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-

Doria. An effective hybrid algorithm for university course

timetabling. J of Scheduling, 9(5): 403–432, 2006.

[12] A. J. Cole. The preparation of examination timetables us-

ing a small store computer. Computer Journal, 7: 117–121,

1964.

[13] M. W. Carter and G. Laporte. Recent developments in prac-

tical course timetabling. Proc of the 2nd Int Conf on Practice
and Theory of Automated Timetabling, LNCS 1408, pp. 3–

19, 1998.

[14] R. Dawkins. The Selfish Gene. Oxford University Press,

1976.

[15] S. Even, A. Itai, and A. Shamir. On the complexity of

timetable and multicommodity flow problems. SIAM Jour-
nal on Computing, 5(4): 691–703, 1976.

[16] B. McCollum. University Timetabling: Bridging the Gap

between Research and Practice. Proc of the 6th Int Conf on
the Practice and Theory of Automated Timetabling, pp. 15–

35, 2006.

[17] P. Moscato. On evolution, search, optimization, genetic

algorithms and martial art: towards memetic algorithms.

caltech concurrent computation program, Technical Report,

1989.

[18] P. Moscato. Memetic algorithms: A short introduction. In:

New Ideas in Optimisation, Mcgraw-Hill’S Advanced Topics
In Computer Science Series, pp. 219–234.

[19] B. Paechter, A. Cumming, M. G. Norman, and H. Luchian.

Extensions to a memetic timetabling system. Proceedings of
the 1st International Conference on Practice and Theory of
Automated Timetabling, LNCS 1153, pp. 251–265, 1996.

[20] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiaran-

dini, M. Dorigo, L. Gambardella, J. Knowles, M. Manfrin,

M. Mastrolilli, B. Paechter, L. Paquete, and T. Stützle. A

comparison of the performance of different metaheuristics

on the timetabling problem. Lecture Notes in Computer Sci-
ence 2740, pp. 329–351,2002.

[21] O. Rossi-Doria and B. Paechter. A memetic algorithm for

university course timetabling. Proc. of Combinatorial Opti-
misation, 2004.

[22] http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html

[23] http://www.cs.nott.ac.uk/ gxk/papers/nbhPhDthesis.pdf

[24] A. Schearf. A survey of automated timetabling. Artificial
Intelligence Review, 13(2):pp. 87–127, 1999.

[25] K. Socha, J. Knowles, and M. Samples. A max-min ant sys-

tem for the university course timetabling problem. Proc. of
the 3rd Int. Workshop on Ant Algorithms, ANTS 2002, LNCS

2463, pp. 1–13, 2002.

[26] D. J. A. Welsh and M. B. Powell. An upper bound for

the chromatic number of a graph and it’s application to

timetabling problems. Computer Journal, 10(1): 85-86,

1967.

433433433

