313 research outputs found

    Subgroup Discovery trhough Evolutionary Fuzzy Systems applied to Bioinformatic problems

    Get PDF
    Subgroup discovery is a descriptive data mining technique using supervised learning. This paper presents a summary about the main properties and elements about subgroup discovery task. In addition, we will focus on the suitability and potential of the search performed by evolutionary algorithms in order to apply in the development of subgroup discovery algorithms, and in the use of fuzzy logic which is a soft computing technique very close to the human reasoning. The hybridisation of both techniques are well known as evolutionary fuzzy system. The most relevant applications of evolutionary fuzzy systems for subgroup discovery in the bioinformatics domains are outlined in this work. Specifically, these algorithms are applied to a problem based on the Influenza A virus and the accute sore throat problem

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

    Get PDF
    Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curve‐fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fine‐tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and so forth. Each facet of this relationship creates a strand in the literature, as membership function fine‐tuning, fuzzy rule‐based learning, and so forth and the purpose here is to outline some of what has been done in each aspect. Special focus is given to Genetic Programming‐based EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps that still prevail in the literature. The concluding remarks address some further topics of current research and trends, such as interpretability analysis, multiobjective optimization, and synthesis of a FIS through Evolving methods

    Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm

    Get PDF
    The residual stresses induced during shaping and machining play an important role in determining the integrity and durability of metal components. An important issue of producing safety critical components is to find the machining parameters that create compressive surface stresses or minimise tensile surface stresses. In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows constructing transparent fuzzy models considering both accuracy and interpretability attributes of fuzzy systems. The new method employs a hierarchical optimisation structure to improve the modelling efficiency, where two learning mechanisms cooperate together: NSGA-II is used to improve the model’s structure while the gradient descent method is used to optimise the numerical parameters. This hybrid approach is then successfully applied to the problem that concerns the prediction of machining induced residual stresses in aerospace aluminium alloys. Based on the developed reliable prediction models, NSGA-II is further applied to the multi-objective optimal design of aluminium alloys in a ‘reverse-engineering’ fashion. It is revealed that the optimal machining regimes to minimise the residual stress and the machining cost simultaneously can be successfully located

    Analysing the Moodle e-learning platform through subgroup discovery algorithms based on evolutionary fuzzy systems

    Get PDF
    Nowadays, there is a increasing in the use of learning management systems from the universities. This type of systems are also known under other di erent terms as course management systems or learning content management systems. Speci cally, these systems are e-learning platforms o ering di erent facilities for information sharing and communication between the participants in the e-learning process. This contribution presents an experimental study with several subgroup discovery algorithms based on evolutionary fuzzy systems using data from a web-based education system. The main objective of this contribution is to extract unusual subgroups to describe possible relationships between the use of the e-learning platform and marks obtained by the students. The results obtained by the best performing algorithm, NMEEF-SD, are also presented. The most representative results obtained by this algorithm are summarised in order to obtain knowledge that can allow teachers to take actions to improve student performance

    Constitution of Ms.PacMan Player with Critical-Situation Learning Mechanism

    Get PDF
    We previously proposed evolutionary fuzzy systems of playing Ms.PacMan for the competitions. As a consequence of the evolution, reflective action rules such that PacMan tries to eat pills effectively until ghosts come close to PacMan are acquired. Such rules works well. However, sometimes it is too reflective so that PacMan go toward ghosts by herself in longer corridors. In this paper, a critical situation learning module is combined with the evolved fuzzy systems, i.e., reflective action module. The critical situation learning module is composed of Q-learning with CMAC. Location information of surrounding ghosts and the existence of power-pills are given to PacMan as state. This module punishes if PacMan is caught by ghosts. Therefore, this module learning which pairs of (state, action) cause her death. By using learnt Q-value, PacMan tries to survive much longer. Experimental results on Ms.PacMan elucidate the proposed method is promising since it can capture critical situations well. However, as a consequence of the large amount of memory required by CMAC, real time responses tend to be lost

    Contextual confidence measures for continuous speech recognition

    Get PDF
    This paper explores the repercussion of contextual information into confidence measuring for continuous speech recognition results. Our approach comprises three steps: to extract confidence predictors out of recognition results, to compile those predictors into confidence measures by means of a fuzzy inference system whose parameters have been estimated, directly from examples, with an evolutionary strategy and, finally, to upgrade the confidence measures by the inclusion of contextual information. Through experimentation with two different continuous speech application tasks, results show that the context re-scoring procedure improves the capabilities of confidence measures to discriminate between correct and incorrect recognition results for every level of thresholding, even when a rather simple method to add contextual information is considered.Peer ReviewedPostprint (published version

    A Concurrent Fuzzy-Neural Network Approach for Decision Support Systems

    Full text link
    Decision-making is a process of choosing among alternative courses of action for solving complicated problems where multi-criteria objectives are involved. The past few years have witnessed a growing recognition of Soft Computing technologies that underlie the conception, design and utilization of intelligent systems. Several works have been done where engineers and scientists have applied intelligent techniques and heuristics to obtain optimal decisions from imprecise information. In this paper, we present a concurrent fuzzy-neural network approach combining unsupervised and supervised learning techniques to develop the Tactical Air Combat Decision Support System (TACDSS). Experiment results clearly demonstrate the efficiency of the proposed technique
    corecore