136,904 research outputs found

    Avian lens spectrin: subunit composition compared with erythrocyte and brain spectrin

    Get PDF
    Chicken lens spectrin is composed predominantly of equimolar amounts of two polypeptides with solubility properties similar, but not identical, to erythrocyte spectrin. The larger polypeptide, Mr 240,000 (lens alpha- spectrin), co-migrates with erythrocyte and brain alpha-spectrin on one- and two-dimensional SDS polyacrylamide gels and cross-reacts with antibodies specific for chicken erythrocyte alpha-spectrin; the smaller polypeptide, Mr 235,000 (lens gamma-spectrin), co-migrates with brain gamma-spectrin and does not cross-react with either the alpha-spectrin antibodies specific for chicken erythrocyte beta-spectrin. Minor amounts of polypeptides antigenically related to erythrocyte beta- spectrin with a greater electrophoretic mobility than lens gamma- spectrin are also detected in lens. The equimolar ratio of lens alpha- and gamma-spectrin is invariantly maintained during the extraction of lens plasma membranes under different conditions, or after immunoprecipitation of whole extracts of lens with erythrocyte alpha- spectrin antibodies. Two-dimensional peptide mapping reveals that whereas alpha-spectrins from chicken erythrocytes, brain, and lens are highly homologous, the gamma-spectrins, although related, have some cell-type-specific peptides and are substantially different from erythrocyte beta-spectrin. Thus, the expression of cell-type-specific gamma- and beta-spectrins may be the basis for the assembly of a spectrin-plasma membrane complex whose molecular composition is tailored to the functional requirements of the particular cell-type

    Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

    Get PDF
    The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion

    Erythrocyte as a link between basic and clinical research

    Get PDF
    © 2011 – IOS Press and the authorsWe review the major hemorheological experimental studies that show the erythrocyte aggregation as a link between basic and clinical research. The results of the clinical cross-sectional and longitudinal studies presented here will highlight the possible association between erythrocyte aggregation and plasma fibrinogen. Basic studies conducted in vitro are also mentioned as for its relevance in answering questions raised in clinical settings, as well as and in understanding the underlying influent factors in the erythrocyte tendency to aggregate and disaggregate.This work was supported by “Fundação para a Ciência e Tecnologia

    Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    Get PDF
    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions

    Erythrocyte complement receptor 1 (CR1) expression level is not associated with polymorphisms in the promoter or 3' untranslated regions of the CR1 gene

    Get PDF
    Complement receptor 1 (CR1) expression level on erythrocytes is genetically determined and is associated with high (H) and low (L) expression alleles identified by a HindIII restriction fragment-length polymorphism (RFLP) in intron 27 of the CR1 gene. The L allele confers protection against severe malaria in Papua New Guinea, probably because erythrocytes with low CR1 expression, are less able to form pathogenic rosettes with Plasmodium falciparum-infected erythrocytes. Despite the biological importance of erythrocyte CR1, the genetic mutation controlling CR1 expression level remains unknown. We investigated the possibility that mutations in the upstream or 3′ untranslated regions of the CR1 gene could control erythrocyte CR1 level. We identified several novel polymorphisms; however, the mutations did not segregate with erythrocyte CR1 expression level or the H and L alleles. Therefore, high and low erythrocyte CR1 levels cannot be explained by polymorphisms in transcriptional control elements in the upstream or 3′ untranslated regions of the CR1 gene

    Evidence that the degree of band 3 phosphorylation modulates human erythrocytes nitric oxide efflux – in vitro model of hyperfibrinogenemia

    Get PDF
    © 2011 – IOS Press and the authors. All rights reservedRecent evidence has shown that plasma fibrinogen, a major cardiovascular risk factor, interacts with the erythrocyte membrane and acts to influence blood flow via erythrocyte nitric oxide (NO) modulation. In the present pioneer in-vitro study, whole blood samples were harvested from healthy subjects and aliquots were incubated in the absence (control aliquots) and presence of fibrinogen at different degrees of band 3 phosphorylation, and the levels of NO, nitrite, nitrate and S-nitroglutathione (GSNO) were determined. Hyperfibrinogenemia interferes with erythrocyte NO mobilization without changing its efflux in a way that seems to be dependent of the degree of band 3 phosphorylation. In presence of higher fibrinogen concentrations the NO efflux is reinforced when band 3 is phosphorylated (p < 0.001). Higher levels of nitrite, nitrate and GSNO were documented (p < 0.05). However, the mechanisms by which fibrinogen signalling modulates erythrocyte function remain to be clarified and are currently under study. These conditions may be considered an approach to be followed in blood storage for transfusions.This study was supported by grants from the FCT - Fundação para a Ciência e a Tecnologia (project reference PTDC/SAU-OSM/73449/2006

    A Study on Proteolytic Enzyme Activity in the Erythrocytes of Diabetic Patients

    Get PDF
    The present study demonstrates the possibility of increased proteolytic activities in diabetic individuals. Proteolytic activity was measured by the amount of amino group released by the erythrocyte lysate of the diabetic individual using phenylhydrazine treated hemoglobin as substrate. The proteolytic activity in erythrocyte lysates against oxidatively damaged hemoglobin was significantly increased in diabetic individuals compared to controls (p<0.001).The result of this study indicates that in diabetic individuals, proteolytic enzymes degrade many oxidatively altered proteins preventing the accumulation of altered and damaged proteins in the cell
    corecore