40,872 research outputs found

    Epigenetic regulation of Mash1 expression

    Get PDF
    Mash1 is a proneural gene important for specifying the neural fate. The Mash1 locus undergoes specific epigenetic changes in ES cells following neural induction. These include the loss of repressive H3K27 trimethylation and acquisition of H3K9 acetylation at the promoter, switch to an early replication timing and repositioning of the locus away from the nuclear periphery. Here I examine the relationship between nuclear localization and gene expression during neural differentiation and the role of the neuronal repressor REST in silencing Mash1 expression in ES cells. Following neural induction of ES cells, I observed that relocation of the Mash1 locus occurs from day 4-6 whereas overt expression begins at day 6. Mash1 expression was unaffected by REST removal in ES cells as well as the locus localization at the nuclear periphery. In contrast bona fide REST target genes were upregulated in REST -/- cells. Interestingly, among REST targets, loci that were more derepressed upon REST removal showed an interior location (Sthatmin, Synaptophysin), while those more resistant to REST withdrawal, showed a peripheral location (BDNF, Calbidin, Complexin). To ask whether the insulator protein CTCF together with the cohesin complex might be involved in regulating Mash1 in ES cells, I performed ChIP analysis of CTCF and cohesin binding across the Mash1 locus in ES cells and used RNAi to deplete CTCF and cohesin expression. A slight increase in the transcription of Mash1 was seen in cells upon Rad21 knock down, although it was not possible to exclude this was a consequence of delayed cell cycle progression. Finally ES cell lines that carried a Mash1 transgene were created as a tool to look at whether activation of Mash1 can affect the epigenetic properties of neighbouring genes

    Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease.

    Get PDF
    Proopiomelanocortin (POMC) is a key mediator of satiety. Epigenetic marks such as DNA methylation may modulate POMC expression and provide a biological link between early life exposures and later phenotype. Animal studies suggest epigenetic marks at POMC are influenced by maternal energy excess and restriction, prenatal stress and Triclosan exposure. Postnatal factors including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC methylation. Recent human studies suggest POMC DNA methylation is influenced by maternal nutrition in early pregnancy and associated with childhood and adult obesity. Studies in children propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body habitus. This review brings together evidence from animal and human studies and suggests that POMC is sensitive to nutritional programming and is associated with a wide range of weight-related and metabolic outcomes

    Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells

    Get PDF
    Currently, little is known about the evolution of epigenetic regulation in animal stem cells. Here we demonstrate, using the planarian stem cell system to investigate the role of the COMPASS family of MLL3/4 histone methyltransferases that their function as tumor suppressors in mammalian stem cells is conserved over a long evolutionary distance. To investigate the potential conservation of a genome-wide epigenetic regulatory program in animal stem cells, we assess the effects of Mll3/4 loss of function by performing RNA-seq and ChIP-seq on the G2/M planarian stem cell population, part of which contributes to the formation of outgrowths. We find many oncogenes and tumor suppressors among the affected genes that are likely candidates for mediating MLL3/4 tumor suppression function. Our work demonstrates conservation of an important epigenetic regulatory program in animals and highlights the utility of the planarian model system for studying epigenetic regulation

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    Epigenetic regulation of osteogenesis: human embryonic palatal mesenchymal cells.

    Get PDF
    Mesenchymal stem cells (MSCs) provide an appropriate model to study epigenetic changes during osteogenesis and bone regeneration due to their differentiation potential. Since there are no unique markers for MSCs, methods of identification are limited. The complex morphology of human embryonic palatal mesenchyme stem cell (HEPM) requires analysis of fractal dimensions to provide an objective quantification of self-similarity, a statistical transformation of cellular shape and border complexity. We propose the hypothesis of a study to compare and contrast sequential steps of osteogenic differentiation in HEPMs both phenotypically using immunocytochemistry, and morphometrically using fractal analysis from undifferentiated passage 1 (P1) to passage 7 (P7) cells. The proof-of-concept is provided by results we present here that identify and compare the modulation of expression of certain epigenetic biomarkers (alkaline phosphatase, ALP; stromal interaction molecule-1, STRO-1; runt-related transcription factor-2, RUNX2), which are established markers of osteogenesis in bone marrow studies, of osteoblastic/skeletal morphogenesis, and of osteoblast maturation. We show that Osteoinductive medium (OIM) modulates the rate of differentiation of HEPM into Run-2+ cells, the most differentiated subpopulation, followed by ALP+ and STRO-1+ cells. Taken together, our phenotypical and morphometric data demonstrate the feasibility of using HEPM to assess osteogenic differentiation from an early undifferentiated to a differentiated stage. This research model may lay the foundation for future studies aimed at characterizing the epigenetic characteristics of osteoimmunological disorders and dysfunctions (e.g., osteoarthritis, temporomandibular joint disorders), so that proteomic profiling can aid the diagnosis and monitor the prognosis of these and other osteoimmunopathologies

    Epigenetic Regulation in Chondrogenesis

    Get PDF
    Epigenetics is an essential mechanism to control gene expression and fundamental cellular processes. DNA methylation in CpG-rich promoters correlates with gene silencing. Histone modification including histone acetylation and deacetylation determines the stability of the chromatin structure. Condensed chromatin (heterochromatin), which has a higher-order histone-DNA structure, prevents the access of transcriptional activators to their target genes. The fundamental unit of eukaryotic chromatin consists of 146 bp of DNA wrapped around a histone octamer. Posttranslational modifications of the histone tail and the chromatin remodeling complex disrupt histone-DNA contacts and induce nucleosome mobilization. Histone acetylation of specific lysine residues in the histone tail plays a crucial role in epigenetic regulation. Histone acetylation is a dynamic process regulated by the antagonistic actions of 2 families of enzymes - the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). The balance between histone acetylation and deacetylation serves as a key epigenetic mechanism for transcription factor-dependent gene expression and the developmental process. We review emerging evidence that DNA methylation, histone acetylation modified by HAT and/or HDAC, and transcription factor-associated molecules contribute to a mechanism that can alter chromatin structure, gene expression, and cellular differentiation during chondrogenesis

    Childhood abuse is associated with methylation of multiple loci in adult DNA

    Get PDF
    Childhood abuse is associated with increased adult disease risk, suggesting that processes acting over the long-term, such as epigenetic regulation of gene activity, may be involved. DNA methylation is a critical mechanism in epigenetic regulation. We aimed to establish whether childhood abuse was associated with adult DNA methylation profiles
    • …
    corecore