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Abstract

Background: Childhood abuse is associated with increased adult disease risk, suggesting that processes acting
over the long-term, such as epigenetic regulation of gene activity, may be involved. DNA methylation is a critical
mechanism in epigenetic regulation. We aimed to establish whether childhood abuse was associated with adult
DNA methylation profiles.

Methods: In 40 males from the 1958 British Birth Cohort we compared genome-wide promoter DNA methylation in
blood taken at 45y for those with, versus those without, childhood abuse (n =12 vs 28). We analysed the promoter methy-
lation of over 20,000 genes and 489 microRNAs, using MeDIP (methylated DNA immunoprecipitation) in triplicate.

Results: We found 997 differentially methylated gene promoters (311 hypermethylated and 686 hypomethylated) in
association with childhood abuse and these promoters were enriched for genes involved in key cell signaling pathways
related to transcriptional regulation and development. Using bisulfite-pyrosequencing, abuse-associated methylation
(MeDIP) at the metalloproteinase gene, PM20D1, was validated and then replicated in an additional 27 males.
Abuse-associated methylation was observed in 39 microRNAs; in 6 of these, the hypermethylated state was consistent
with the hypomethylation of their downstream gene targets. Although distributed across the genome, the differentially
methylated promoters associated with child abuse clustered in genome regions of at least one megabase. The
observations for child abuse showed little overlap with methylation patterns associated with socioeconomic position.

Conclusions: Our observed genome-wide methylation profiles in adult DNA associated with childhood abuse justify
the further exploration of epigenetic regulation as a mediating mechanism for long-term health outcomes.
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Background

Abuse in childhood, encompassing physical, sexual or
emotional abuse, is a key component of a broader
spectrum of child maltreatment [1]. Life-long conse-
quences of child abuse have been identified, including a
greater risk of violence and delinquency, as well as adult
depression and attempted suicide [1]. Hazardous behav-
iors, such as smoking and alcoholism, have also been
found to be associated with abuse in childhood [2-4]
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along with later disease risk factors, including obesity
[1,5], poorer immune function [1,6-8] earlier menarche
[9-11] and outcomes such as ischemic heart disease
[6,12,13] and chronic obstructive lung disease [13,14].
Explanations including biological mechanisms for long-
term outcomes of child abuse have yet to be fully
explored.

DNA methylation and histone modification play cru-
cial roles in development, adaptation and response to
environmental signals [15]. Methylation of cytosine
bases occurs at CpG sites and, in gene promoters, usu-
ally results in gene silencing, whereas loss of methylation
is associated with activity. MicroRNAs that repress the
expression of their often numerous target genes are also
part of epigenetic regulation [16]. MicroRNAs can down
regulate key players in the epigenetic regulation machinery,
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but can also be silenced themselves by DNA methylation
[17]. Whilst epigenetic regulation, by definition, does not
alter DNA sequence, DNA variants can influence methyla-
tion levels. However, DNA methylation associated with
early adversity (prenatal famine) was found to be independ-
ent of that associated with genetic variation [18]. Evidence
to date suggests that stable changes in DNA methylation in
the hippocampus of humans [19] and rats [20,21] are trig-
gered by maltreatment in early life.

Much DNA methylation is tissue specific [22] but most
tissues are unavailable for population studies of living indi-
viduals. Given the multiple outcomes for childhood abuse,
we hypothesize that DNA methylation associated with
childhood abuse is system-wide [23]. Several recent stud-
ies have supported the possibility of differential DNA
methylation associations with social adversity in peripheral
blood cells. For example, Borghol et al., demonstrated as-
sociation of DNA methylation profiles with early life so-
cioeconomic position in blood cells [24]. Provencal et al.,
showed that differential maternal rearing is associated with
differential DNA methylation profiles in both prefrontal
cortex and blood T cells [25]. Klengel et al., demonstrated
childhood trauma-dependent DNA demethylation in func-
tional glucocorticoid response elements of FKBPS in blood
cells [26]. Mehta et al, have delineated recently DNA
methylation signatures of child trauma and posttraumatic
stress disorder in blood cells [27]. Although blood cells turn
over, they are derived from stem cells and progenitors that
stay with us for a life long. Thus, it is plausible that a DNA
methylation event in a stem cell population that is intro-
duced in early life remains into adulthood.

We therefore aimed to establish whether childhood abuse
is associated with adult gene promoter methylation in a
genome-wide investigation of peripheral blood cells [24].
We studied 40 adult males enrolled in the 1958 British
Birth Cohort who have been found to have substantial vari-
ation in promoter methylation in over 6,000 genes, with a
distinct methylation profile associated with socio-economic
position [24]. Those with childhood abuse in this cohort
have been shown to have long-term associations with
negative health outcomes, specifically, a greater preva-
lence of obesity among those who reported physical
abuse in childhood [28].

Methods

Ethics statement

All participants provided written consent and a blood
sample for DNA analysis; ethical approval for a 45y
biomedical survey and data analysis was given by the
South-East Multi-Centre Research Ethics Committee
(ref. 01/1/44) and the Joint UCL/UCLH Committees
on the Ethnics of Human Research (Committee A) (ref.
08/H0714/40).
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Study population

The selection of 40 adult males from the 1958 cohort [29]
has been described previously [24] and are detailed in the
Additional files. In brief, 17,638 participants were enrolled,
all born in England, Scotland and Wales, during a single
week in March 1958. At 45y, 4,177 males provided written
consent and a blood sample for DNA analysis; ethical ap-
proval was given by the South-East Multi-Centre Research
Ethics Committee. After exclusions (e.g. cancer or elevated
C-reactive protein levels, immigrants), 3,362 white males
were classified by socioeconomic position (SEP) and child-
hood abuse. Forty males were selected from extremes of
SEP, including 12 who reported abuse (7 low and 5 high
child SEP; 7 low and 5 high adult SEP). With exclusion of
immigrants, the 1958 cohort shows little genetic popula-
tion stratification [30].

Abuse was identified through participants' reports in a
confidential questionnaire at 45y on the following experi-
ences to age 16y: [1] "I was verbally abused by a parent"; [2]
"I suffered humiliation, ridicule, bullying or mental cruelty
from a parent”; [3] "I was physically abused by a parent —
punched, kicked or hit or beaten with an object, or needed
medical treatment”; [4] "I was sexually abused by a parent”.
A report of any of these was scored as abuse. These ques-
tions were from the PATH Through Life Project including
items derived from the Parental Bonding Instrument, the
British National Survey of Health and Development and
the US National Comorbidity Survey [31].

Measurement of relative DNA methylation levels

DNA sample preparation, methylated DNA immunopre-
cipitation (MeDIP) and microarray hybridization, scanning
and data extraction were performed as described previ-
ously [24]. Briefly, DNA was extracted from whole blood
collected in EDTA at 45 years using an in-house, manual
guanidine hydrochloride and ethanol precipitation method.
DNA promoter methylation data from 20,533 genes and
489 microRNAs for the 40 participants were generated
using MeDIP with an antibody that recognizes and binds
5-methylcytosine (DNA methylation) to isolate methylated
DNA fragments. These fragments were then hybridized to
custom-designed, high-density oligonucleotide microar-
rays, covering approximately 1000 bp upstream to 250 bp
downstream at 100 bp spacing from the transcription start
sites (TSS) in Ensembl (version 44). Microarray data files
used in this study can be downloaded from the Gene Ex-
pression Omnibus (accession number: GSE31713). Three
replicate microarrays were generated per individual and
demonstrated adequate reproducibility [24]. Both hier-
archical clustering and principal components analysis
applied to the 500 most variable probes across all mi-
croarrays showed that the three replicates clustered.
Furthermore, >70% of the variance in these probes was
explained by individual variation.
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Microarray statistical analysis

The steps taken in the microarray statistical analysis are
shown in Additional file 1: Figure S1 and justification for
our approach is given in Additional files. Quality control
involved generating MvA plots (i.e. plots of log(Cy5/Cy3)
vs log(Cy5 x Cy3)) to identify those with severe dye biases
or low signal. Microarrays deemed unacceptable were re-
peated, so no sample was excluded by quality control. Un-
supervised clustering failed to identify batch effects related
to hybridization date. Normalization of the final set of mi-
croarrays proceeded by computing log ratios of the bound
(Cy5) and input (Cy3) microarray channel intensities for
each microarray and then microarrays were normalized to
one another using quantile normalization under the as-
sumption that all samples have identical overall methyla-
tion levels. A probe was called differentially methylated if
the modified t-statistic from ‘limma’ [32] of Bioconductor
[33] was significant (p < 0.05) and the log2 fold-difference
of the mean group probe intensities was >0.25. A pro-
moter was called differentially methylated if it contained a
probe called differentially methylated and if it contained
probes for which modified t-statistics were significantly
higher or lower than the average probe on the microarray.
Significance for the latter was determined by applying the
Wilcoxon rank-sum test and then calculating a corre-
sponding false discovery rate (FDR) [34] using the method
of Benjamini and Hochberg [35]. Promoters with FDR <
20% were called differentially methylated. This false dis-
covery rate (FDR) was designed to test the chances of an
overall false discovery among a series of related results. It
is particularly useful for an exploratory analysis concerned
with making general inferences from among a set of 'dis-
coveries', rather than guarding against one or more indi-
vidual false positives. The FDR threshold of 20% used here
indicates that the expected proportion of promoters incor-
rectly called differentially methylated is around 20%. We
find this threshold acceptable because this preliminary
study is not meant to definitively characterise the epigen-
etic signatures of childhood abuse. In Figure 1, we present
a heatmap showing probe methylation scores averaged
across triplicate microarrays. Clustering was performed
using Ward's hierarchical clustering algorithm with
Pearson correlation distance as the distance metric.

All bioinformatic functional analysis was based on
gene sets from GO [36], KEGG [37] and mSigDB [38].
Enrichment for differential methylation was determined
by applying the hypergeometric test to the overlap be-
tween known gene sets and those found in our study to
be differentially methylated. FDR values were obtained
by adjusting these significance levels over all gene sets
and pathways considered. The differentially methylated
gene set was then subjected to pathway analysis using
Ingenuity Pathway Analysis software (http://ingenuity.
com/products/pathways_analysis.html).
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Figure 1 Promoter methylation associated with childhood
abuse. Heatmap showing MeDIP probe values from the 997
differentially methylated promoters (rows) across all 40 participants
(columns). Each promoter is represented by the probe most
associated with childhood abuse. Blackened squares above the
columns denote non-abuse males, white squares denote those with
childhood abuse. Other covariates included are childhood and
adulthood socio-economic position (white = low, gray = high).
Neither appears to explain the main sample clusters.

In assessing megabase regions of the genome, methyla-
tion patterns were obtained by computing the mean methy-
lation score difference between abuse and non-abuse
groups for each probe, generating a UCSC wiggle track file
from these differences and then uploading it for display on
the UCSC genome browser (http://genome.ucsc.edu/).

Validation and further methylation analysis
First, we validated the microarray calls, selecting 11 genes
with the strongest methylation association with abuse
(Additional file 2: Figure S2). Validation was performed
using quantitative PCR (qPCR) of bound and input frac-
tions of MeDIP with primers flanking the differentially
methylated regions (Additional file 3: Table S1). Second, we
validated two of these 11 genes, SLC17A3 and PM20D1,
hypermethylated in association with abuse on MeDIP, by
bisulfite pyrosequencing (in participants with sufficient
DNA), as an independent method that measures methyla-
tion at specific sites [39]. Next, bisulfite pyrosequencing
analysis of PM20D1 was repeated on an additional 27 males
selected using the same criteria as the original [40] group.
Details of pyrosequencing conditions, including optimization
of PCR amplification using 0, 50 and 100% methylation con-
trols are provided in Additional files.

Cell type ratios in blood are known to fluctuate so cer-
tain methylation differences between individuals could
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be caused by different cell ratios, particularly in pro-
moters of genes with cell-type specific methylation. To
rule out this possibility in our analysis, we compared our
results to published MeDIP [40], expression [41] and
[lumina 450 K [42] profiles of purified blood cell types.
In each published dataset, we identified all differentially
methylated or expressed genes or probes (as appropri-
ate) between all pairs of available blood cell type profiles
and then compared those lists of differences to the list
of differentially methylated genes or probes between the
abused and non-abused individuals in our study. If vari-
ation in blood cell type ratios explains the methylation
differences in our analysis, then we would expect to see
at least one larger-than-expected intersection. In each
case, however, hypergeometric tests failed to identify
larger-than-expected intersections (p > 0.4 in each case).
For the published MeDIP dataset [40], the microarray
design used was similar to our design so we were able to
construct a 1-1 mapping between over half of the probes
across our respective designs. Probes were paired if they
were closest and within 150 bp. Unfortunately, this MeDIP
dataset only contained profiles for B and T cell purified
cell types. We therefore expanded our analysis to include
an expression dataset [41] with profiles for CD33+ (mye-
loid), CD34+, CD71+ (early erythroid), CD4+, CD8+,
CD14+ (monocyte), CD19+ (B) and CD56 (natural killer)
cells. We also included a recent Illumina 450 K dataset
[42] with profiles for granulocytes, neutrophils, eosino-
phils, CD4+, CD8+, CD14+, CD19+ and CD56+ cells. For
both these datasets, results were compared at the gene
level.

Results and discussion

Physical, cognitive and emotional characteristics and
biomarkers are listed for participants in Table 1. As ex-
pected, the abuse group showed more adverse character-
istics than the non-abuse group, but differences did not
reach conventional p-values in this small sample.

Hundreds of promoters are differentially methylated in
association with child abuse

In total, 997 gene promoters were differentially methylated
in association with childhood abuse, affecting 1141 differ-
ent genes (Additional files). Of these promoters, 311 were
hypermethylated and 686 were hypomethylated in abused
compared to non-abused males. Figure 1 shows a heatmap
depicting the relative methylation levels for all differen-
tially methylated promoters and how they cluster within
study participants. Even at more stringent thresholds (p <
0.01 and q < 0.05, see Methods), there were still 34 differ-
entially methylated promoters corresponding to 58 differ-
ent genes with similar proportions hypermethylated to
hypomethylated. These cluster the study participants very
similarly to the larger set of differentially methylated
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promoters (Additional file 4: Figure S3). To assess whether
the broad methylation signature of childhood abuse was
affected by the numerical imbalance of abused versus non-
abused (N=12 vs 28), we conducted a permutation
analysis. We found that 997 differentially methylated pro-
moters between abused and non-abused was larger than
the number of differences associated with 82% of random
partitions (410 of 500) of the participants with partition size
ratios corresponding to 12 vs 28. To address any concern
that the abuse associated methylation differences were
reflecting differences in blood cell type ratios, we compared
our results with recently published expression and methyla-
tion profiles of purified cell types [40-42]. We found no evi-
dence of statistically significant overlaps between our
results for abuse and cell-type specific methylation and ex-
pression patterns (p > 0.4, hypergeometric test; see Methods
for details).

In 11 genes selected for validation, the direction of
abuse associated methylation differences was con-
firmed using qPCR of bound and input MeDIP frac-
tions (Additional file 2: Figure S2). We also confirmed
abuse associated hypermethylation by pyrosequencing
of sites in the promoter of SLC17A3 and the first exon
of PM20D1 in the original samples (Figure 2A) and in
an additional 27 males for PM20D1 (Figure 2B), and
with SNP rs11540014 showing no association with
methylation levels (data not shown). However, the as-
sociations in the promoter of SLC17A3 were not repli-
cated in the additional 27 males.

Abuse-associated methylation clusters by

biological function

Full results of functional analysis are given in Additional
files. Differentially methylated gene promoters in abused
males (1141 genes) were enriched in regulatory (169 genes)
and developmental (230 genes) functions (Table 2). Central
to both of these functions is the KEGG WNT signaling
pathway; enriched for genes [15] for which promoters are
hypomethylated in abused individuals, consistent with acti-
vation of this pathway in blood cells of the abuse group
(Figure 3). No other KEGG pathway was enriched with dif-
ferentially methylated genes at p <0.05 (uncorrected for
multiple testing). Of the differentially methylated genes
that perform some regulatory function, most (134 of 169)
are hypomethylated in abused males. The regulation
mainly affects transcription as indicated by enrichment of
these genes in functional categories such as chromatin
modification (28 genes), histone modification (11 genes)
and transcription factor binding (35 genes). Similarly, most
of the 230 developmental genes are hypomethylated in
abused males (172 genes), best characterized by the general
gene ontology category “multicellular organismal develop-
ment” (163 genes). More specific subcategories do not
show significant enrichment.
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Table 1 Characteristics of the 40 male study participants

Age (y) No abuse n=28 Abuse n=12 p*
Birthweight, g, mean + SD* 0 3577.35 (574.91) 3338.21 (590.25) 0.24
Height, cm, mean + sp*® 7 1.24 (0.07) 1.21 (0.07) 0.27
Maths score, mean + SD** 16 14.82 (7.32) 12.29 (7.95) 044
Reading score, median (Q1, QB)#$ 16 7 (21,31) 31 (12, 32) 0.70
Socio-emotional adjustment number ~ median (Q1-Q3)" 7 4(1,12) 85 (2,13) 047
Alcohol drinks daily, n 9)* 42 7 (25.93) 2 (1667) 053
Smokers, n (%)* 42 7 (25.93) 4 (33.33) 0.64
Height, cm, mean + SD* 42 1.78 (0.09) 1.76 (0.06) 0.52
BMI, kg/m?, mean + SD 45 26.63 (3.99) 28.69 (4.39) 0.16
Waist circumference, cm, mean = SD 45 97.43 (10.24) 102 (12.02) 023
Diastolic blood pressure, mmHg, mean + SD 45 82.77 (11.71) 8553 (12.72) 051
Systolic blood pressure, mmHg, mean + SD 45 132,92 (1861) 134.72 (18.90) 0.78
Fev1', mean + SD* 45 3.84 (065) 370 (063) 053
FEV1 = one-second forced expiratory volume; best test of three spirometry readings.
N for non-abuse <28 (range 22 to 27).
SN for abuse <12 (range 7 to 10).
~higher score = poorer adjustment.
*p-value from t-test, except for median (IQR), when Two-sample Wilcoxon rank-sum test was used.
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Figure 2 Validation of MeDIP results. A. Quantification of methylation differences in the abuse and non-abuse groups by bisulfite pyrosequencing
analysis of the SLC17A3 promoter and the PM20D1 first exon and intron. DNA methylation at 14 CpG sites in the SLC17A3 promoter and 12 and 1 CpG
sites in the PM20D1 first exon and first intron, respectively, among the abuse and non-abuse groups is shown (N= 10 vs. 26 for SLC17A3; N=9 vs 23 for
PM20DT). One-sided t-tests were applied to each CpG site to test for association of methylation levels with childhood abuse, and false discovery rates
were calculated for the resulting p-values in order to correct for multiple testing. All false discovery rates (FDR) were less than 0.1, indicating significant
association between CpG methylation levels and childhood abuse. **: FDR < 0.025; *: FDR < 0.05; ++: FDR < 0.1; +: FDR < 0.2. The bars represent average
methylation for all subjects in a group and error bars indicate the standard error of the mean. Physical maps of the regions analyzed are presented
above the charts where CpG positions are indicated by balloons. The transcription start site (TSS) is indicated by a hook arrow. The positions of the
primers used for pyrosequencing (Additional file 3: Table S2) are indicated by arrows. B. Replication of the quantification of the differences in methyla-
tion at PM20D1 between the abuse and non-abuse groups in an additional 27 males that were not profiled using MeDIP (N =7 vs. 20). Pyrosequencing
was applied to measure the methylation levels of 13 CpG sites in the first exon and intron of PM20D1.
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Table 2 Selected functional analysis of abuse associated hypo- and hypermethylation

Pathway/function Number of genes

Differentially methylated

Hypo-methylated Hyper-methylated

in pathway/function

n p n p fdr n p fdr
WNT signaling pathway 142 19 0.0013 15 00020 053 4 022 1
Regulation 2330 169 0.017 134 00018 051 33 0.88 1
- Chromatin modification 273 32 0.0004 28 000005 009 4 0.68 1
- Histone modification 105 13 0.013 1 0008 094 2 0.53 1
- Transcription factor binding 493 41 0.034 35 0006 084 6 0.84 1
Development 3054 230 0.0007 172000096 040 58 0.17 1
- Multicellular organismal development 2838 213 0.0012 163 00006 032 50 032 1
Cell surface receptor linked signal transduction 1778 125 0.071 79 0.60 1 46 0002 053

n’is the number of genes in the relevant pathway that are differentially methylated in association with abuse.
‘p’ was calculated using the hypergeometric test, it indicates the statistical significance of the enrichment.

‘fdr’ the false discovery rate (FDR) corresponding to the p-value.

Differentially hypermethylated gene promoters in
abused males are enriched in few functional categor-
ies. One of these, "cell surface receptor linked signal
transduction”, contains 125 genes with differen-
tially methylated promoters of which 46 are

hypermethylated in abused individuals. An Ingenu-
ity functional analysis of the differentially methyl-
ated genes revealed similar molecular and cellular
functions associated with transcriptional control
(Additional file 5: Figure S4).
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Figure 3 Differential methylation in the WNT signaling pathway. The KEGG (http://www.genome.jp/kegg/mapper.html) depiction of the
WNT signaling pathway is shown with hypermethylated gene promoters (more methylated in the group with childhood abuse) colored red and
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Abuse-associated methylation consistent with

microRNA targeting

MicroRNA genes are, like DNA methylation, known to
repress the expression of target genes. However, unlike
an individual methylation mark which typically targets a
single nearby gene, each microRNA is associated with a
specific set of a few hundred target genes [43]. We dis-
covered an association of microRNA DNA hypermethy-
lation with abuse. Of 489 microRNAs analysed, 39 were
differentially methylated, of which 31 were hypermethy-
lated in association with abuse. The target genes of six
of these included a highly non-random proportion of
genes with decreased promoter methylation in abused
males (Table 3).

Abuse-associated hypomethylation and CpG density

DNA methylation in regions of relatively high CpG fre-
quency, known as CpG islands, plays an important regu-
latory role in the otherwise CpG-depleted (<40% of that
expected) mammalian genome [44,45]. In spite of the
fact that MeDIP is known to enrich for methylation dif-
ferences away from CpG islands [46], we observed un-
usually high CpG frequencies in promoters with reduced
methylation levels in abused individuals. This frequency

Table 3 Methylation of microRNAs and their target genes
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(0.86) is significantly higher than that observed in the
average promoter (frequency = 0.42; p < 1.4 x 107%) as well
as promoters with increased methylation levels in abused
individuals (frequency = 0.38; p <4 x 10™% Additional file
6: Figure S5). This frequency (0.86) is even higher than the
0.6 threshold used to define CpG islands.

Abuse-associated methylation clusters by

genomic location

Differentially methylated DNA loci associated with early
life environments tend to cluster in the genome [24,47].
Chromosome-wide views of our data reveal megabase-
sized regions significantly enriched for differentially
methylated promoters (Figure 4). At the chromosomal
level, chromosomes 16 and 17 were significantly enriched
for hypomethylated promoters in abused individuals,
whereas chromosome X was significantly enriched for
hypermethylated promoters. At the megabase level, three
regions were significantly enriched for differentially meth-
ylated promoters (p < 0.05). All were hypermethylated in
abused individuals: chr1:246250000-247000000, chr14:10
0250000-101000000 and chr19:58500000-59250000 (gen-
ome assembly hgl8), but only the regions on chromo-
somes 1 and 19 passed multiple testing correction with

MicroRNA Number of
targets

Number Number
hypo-methylated hyper-methylated

MicroRNA
methylation

Enrichment
p-value

Hypomethylated targets

mir-514 49 10 1

let-7d 320 26

AFF4, BAALC, BRWD1, CARM1, ENAH,
KLF13, MYO1B, NR3C1, SVIL, TCF12

ATP2A2, BACH1, BRWD1, CDV3, CHD4,

5.71E-05  hypermethylated

0.0030 hypermethylated

CPSF4, DCUN1D2, DOCK3, DOTIL, EFHD2,
EZH2, GGA3, LIMD2, LRIGT, MECP2, MGAT4A,
MIB1, MLL5, PARD6B, PBX3, PRTG, PTPRU,

mir-520c 274 23 ASF

1B, BCL2L11, BRP44L, DDHD1, DPYSLS, FLTT,

RDH10, SOCS1, UNC5A, WDR37

0.0035 hypermethylated

FNDC3B, INHBB, KCNMAT, KLF13, MAP3K14,
MECP2, MKNK2, MTUS1, ORMDL3, PBX3, PFN2,
RGL1, SMAD2, UBE2Q2, WDR37, ZFP36L2, ZFPM2

mir-215 37

mir-519a 377 28

AFF4, BRWD1, BTG3, CELSR2, DNAJB6, LRIGT,

ARFGEF1, FNDC3B, GRHL1, KLHDCS,
LRRFIP1, MECP2

0.0060 hypermethylated

0.0074 hypermethylated

MAP3K5, MAP4, MASTL, MCM7, MECP2, MIBT,

NPAS2, OBFC2A, PARD6B, PFN2, PTHLH,

RAPGEF4, RASD1, SCAMP2, SFRS2, SMOC2,
TMEM64, VGLL3, WHSC1, YEST, ZFPM2, ZFYVES

mir-519e 104

ARHGEF12, ARL4C, BCOR, CCNG2, CTDSPL2,

0.0075 hypermethylated

DLL1, DPYSL5, EFNB3, NEDDA4L, NPAS2, RAB35

mir-203 239 20

AFF4, BCL7A, CNTFR, CTDSPL2, DNMT3B, EGR1,

0.0064 hypomethylated

FALZ, INSIG1, KCTD9, LASP1, MECP2, PLD2,
PPM1B, RAPGEF4, SLC12A2, SMAD1, SPEN,

SPIRET, TCF12, YWHAQ

MicroRNAs are listed that have statistically significant MeDIP differences between abuse and non-abuse groups whose predicted gene targets are enriched for
gene promoters that are also differentially methylated between abuse and non-abuse groups. In each case, enrichment is for targets with lower methylation in
the abused group.

“enrichment p-value” indicates the level of enrichment for hypomethylated targets.

“microRNA methylation” indicates whether the data predicts significantly higher (“hypermethylated”) or lower (“hypomethylated”) methylation levels in the
abuse group.
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Figure 4 Megabase regions enriched with methylation differences. Promoter MeDIP differences across chromosomes 16 (A), 17 (B) and X (C)
and across two smaller genomic regions (D) and (E) are shown using images obtained from the UCSC Genome Browser. The top track depicts average
differences of log abuse — log non-abuse. Each bar in the middle track identifies a significant difference. Bars above or below the horizontal line identify

sites with higher or lower methylation in the abused group. The bottom track indicates relative gene abundance across the chromosome.

EDR below 0.2 (FDR < 0.006 and 0.0001, respectively;
Figure 4D,E). The regions on chromosomes 14 and 19
each contain a cluster of microRNAs in which pro-
moters account for all of their statistically significant
site-specific differential methylation.

Clustering of differential promoter methylation, up to
2 Mb apart, was detectable across the entire genome
(Additional file 7: Figure S6).

Socio-economic position (SEP) and abuse

Previously, we identified 1252 gene promoters associ-
ated with childhood SEP and 545 associated with adult-
hood SEP [24]. Only 73 of 1252 (5.8%) and 19 of 545
(3.5%) gene promoters were also differentially methyl-
ated in association with childhood abuse. Just three
(CTAGES, GNG4, MYOIB) were differentially methylated
in association with all three characteristics (childhood and
adult SEP and childhood abuse). The association for
PM20D1 was specific to abuse.

Conclusions
Blood DNA of 45y old males revealed differentially meth-
ylated gene promoters associated with abuse that occurred
three decades earlier in childhood. There were several
novel findings from our study. First, hundreds of specific
promoter associations were uncovered, with approxi-
mately two-thirds hypomethylated in the abused group.
Second, replication confirmed that hypermethylation in
PM?20D1 is associated with childhood abuse. Third, micro-
RNA gene targets tended to be hypomethylated, particu-
larly when the microRNA itself was hypermethylated.
Fourth, differentially methylated genes were clustered in
discrete functional pathways and in genomic locations.
These findings support the hypothesis that the differences
in DNA methylation we observed were non-random and
reflect an organized biological process.

It is now known that genes act through functional and
interacting pathways, so we adopted a genome-wide ap-
proach to DNA methylation analysis, recognizing that



Suderman et al. BMC Medical Genomics 2014, 7:13
http://www.biomedcentral.com/1755-8794/7/13

modest epigenetic changes in numerous genes could re-
set the function of gene networks having phenotypic ef-
fects. We found enrichment of differentially methylated
promoters in the WNT signaling pathway complex with
hypomethylation of 15 genes in the abused. Elsewhere
this pathway complex has been found to play a key role
in embryonic development and cellular proliferation
[48], and is deregulated in some chronic health condi-
tions such as obesity [49-51], diabetes [52-54], metabolic
syndrome [55], cancer [56-59] and inflammatory pro-
cesses [56-58]. Whilst recognizing that our findings do
not provide evidence for causal links between child
abuse and later outcomes, they nonetheless raise the
prospect of mediation by epigenetic modifications.

Of particular note was hypermethylation of PM20D1I in
association with abuse, given a previous study showing a
variably methylated region at this metalloproteinase gene
was hypermethylated in association with obesity [60]. This
association persisted over 10 years of follow-up in an eld-
erly population. Interestingly, child abuse has been shown
to be associated with adult obesity in the full 1958 cohort
[5] and is suggested by our Table 1. It is perhaps surprising
to note that both our association with childhood abuse
and the association with obesity were observed in blood
DNA when PM20D1 has its highest expression levels in
the brain and lowest expression levels in blood [41]. Given
that it is highly conserved from yeast to human, it likely
plays a key though little understood role in the cell. By
contrast, SLC17A3 is like most of the genes differentially
methylated in childhood abuse, most highly expressed in
blood and a few specific brain regions (hypothalamus, pre-
frontal cortex, pituitary) [41]. It appears conserved in
fewer species, mainly the higher mammals, and the
expressed protein acts as a voltage-driven transporter in
blood. Given this basic role, it is likely essential at nearly
all stages of life.

Further support for epigenetic regulation working
through interacting pathways comes from the striking en-
richment in the abuse group of hypermethylated micro-
RNAs combined with hypomethylation of their respective
gene targets across the genome. It implies that during typ-
ical development, active transcription of these microRNAs
is combined with synergistic target methylation to create a
double layer of repression of these target genes; a repres-
sion that is lifted in association with child abuse.

Intriguingly, hypomethylated gene promoters in abused
individuals typically contained sequences with very high
CpG frequency. Demethylation of such CpG-rich pro-
moters in abused males suggests that abuse leads to in-
creased activity of key basic cellular functions, such as gene
regulation and development, as found in pathway analysis.
Another genomic feature associated with abuse was the
clustering of differential promoter methylation detectable
across the entire genome, providing further evidence of
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genome-wide as well as gene-specific organization of epi-
genetic profiles.

Previously we observed genome-wide clustering in asso-
ciation with SEP, but importantly, the “methylation signa-
ture” for abuse differed, such that <10% of the differentially
methylated regions overlapped with childhood SEP [24].
Also, the differentially methylated genes were enriched in
different functional pathways, notably, MAP kinase for SEP
and WNT for child abuse. Further, the abuse associated dif-
ferential methylation of microRNAs and their target genes
was not seen for SEP. Whilst not ruling out generic associa-
tions with early life adversities, our findings suggest that dif-
ferent adversities are associated with different epigenetic
changes to the genome.

Several methodological considerations arise here. First,
reliable measurement of the frequency and severity of
child abuse is not straightforward'. Child abuse was iden-
tified through participant’s report at 45y and was primarily
emotional and physical abuse — only rarely sexual abuse.
All measures have biases and inconsistencies yet retro-
spective reports are an accepted method of ascertainment
in population studies [1]. Furthermore, prospective identi-
fication of abuse is not feasible in large studies and likely
to be unrepresentative. By contrast, retrospective self-
report, used here, is feasible though it is likely to under-
estimate true levels of abuse. Second, given the scale of
assessing methylation at all promoters, we could only
study a small but selected sample. Whilst our study is im-
balanced with respect to abuse (12 vs 28) it has the benefit
of control for SEP. Third, we used DNA from whole blood
to test our hypothesis, currently the only practical option
for population based studies. We cannot know the extent
to which our results relate to gene expression. Use of whole
blood also raises the possibility that abuse-associated differ-
ences in B-to-T cell ratios might account for some of our
observations. We have partly addressed this by noting that
B-cell and T-cell expression and methylation profiles
[40,41] do not differ for many genes with abuse-associated
methylation levels. Fourth, those abused in childhood might
represent a distinct genetic group, but genetic differences
alone are unlikely to account for all methylation differences
observed here. Given the possibility of differences in epi-
genetic response due to genetic variation, future integrated
studies of the epigenome and whole genome sequencing
are an important next step. Fifth, our study is imbalanced
including 28 controls compared to only 12 with childhood
abuse resulting in reduced power to identify methylation
differences. Nonetheless, this preliminary study was able to
discover hundreds of differentially methylated promoters so
future studies with better balance are likely discover many
more. Finally, there is currently no ‘gold standard’ for meas-
uring the methylome, yet MeDIP is a well-established
genome-wide method that has been evaluated [46,61-65]
and we confirmed all the micro-array calls in the top 11
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methylation differences. Current genome-wide methods
are more complementary than interchangeable and each
has its strengths and weaknesses. Our analyses included
triplicate arrays and methylation differences were con-
firmed in selected genes using other gene-specific
methods both here and previously [24]. In using an ana-
lytic approach that was sensitive to subtle methylation
associations across gene networks necessarily results in
some false positives (for justification see Additional
files). However, the non-random organization of methy-
lation differences throughout the genome supports our
main hypothesis that childhood abuse is associated with
DNA methylation changes in adult blood.

In sum, the pattern of changes associated with child
abuse detected in peripheral blood cells of 45 year-olds
suggest that there is a system-wide readjustment of the
epigenome to signals triggered by early life abuse. Our
study does not demonstrate causality, nor can it demon-
strate a temporal relationship between child abuse and
DNA methylation levels in adulthood. It does, however,
provide a justification for a range of studies addressing
epigenetic responses to child abuse and their mediating
role with later phenotypic outcomes.

Additional files

Additional file 1: Figure S1. Summary of methods.

Additional file 2: Figure S2. Validation by gPCR. Eleven gene
promoters identified by microarray as being differentially methylated
were subjected to real-time PCR quantification of the enrichment by
the MeDIP procedure. Results were normalized against a methylated
luciferase gene-containing plasmid (control), which was added to
every sample in equal quantity before MeDIP. The y-axis represents
relative concentration levels generated by applying PCR to
methylation-enriched DNA. Each real-time PCR reaction was
performed in duplicate for all subjects. Shown are the averages per
group. Error bars indicate the standard error of the mean. Above the
chart are tracks of the regions with the microarray data. (The bars
indicate the difference between the abuse and the non-abuse groups,
bars descending from the physical map are regions that are more
methylated in the abused than the non-abused group; lower tracks
identify probes with the most statistically significant differences).
Primers for each PCR are given in Additional file 3: Table S1. They were
selected so that the forward primer (denote by 'F') binds to the left
and the reverse primer (denoted by 'R’) binds to the right of the most
significantly different probe. In some cases, two sets of PCR primers
were designed, denoted by ‘set1" and ‘set2'. 85% of the eleven gene
promoters show statistically significant PCR quantification differences
(*: P<0.05; **: P<0.01), hence validating differences found by
microarray.

Additional file 3: Supplementary Material.

Additional file 4: Figure S3. Promoter methylation associated with
childhood abuse. Heatmap showing MeDIP probe values from the 34
differentially methylated promoters (rows) across all 40 participants
(columns) based on more stringent thresholds (q < 0.05 and p < 0.01,
see Methods). Each promoter is represented by the probe most
associated with childhood abuse. Blackened squares above the columns
denote non-abuse males, white squares denote those with childhood
abuse. Other covariates included are childhood and adulthood socio-
economic position (white = low, gray = high). None appears to explain
the main sample clusters.
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Additional file 5: Figure S4. Summary of functional analysis. Genes
with hypermethylated or hypomethylated promoters in the abuse group
were analysed by Ingenuity Pathway Analysis”. Gene categories enriched
with this set of genes as well as enrichment p-values are listed.

Additional file 6: Figure S5. CpG frequency in differentially methylated
regions. Bars indicate average normalized CpG frequencies (observed/
expected CpG frequency) of ‘all’ genomic regions profiled, regions
‘hypermethylated’ in abused individuals and regions ‘hypomethylated” in
abused individuals. Error bars depict standard deviation. The dashed line
indicates the usual CpG frequency used to identify CpG islands.

Additional file 7: Figure S6. Methylation dependencies across
megabases. Shown are correlations of methylation differences from 500
kilobase regions at various distances apart. The level of clustering was
quantified as the level of correlation between the differential methylation
statistics within promoters at different distances apart. The solid grey
region contains the 95% Cl, and error bars contain the 95% Cl for
correlation values.
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