206,956 research outputs found

    Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail

    Get PDF
    The inner structural Gag proteins and the envelope (Env) glycoproteins of human immunodeficiency virus (HIV-1) traffic independently to the plasma membrane, where they assemble the nascent virion. HIV-1 carries a relatively low number of glycoproteins in its membrane, and the mechanism of Env recruitment and virus incorporation is incompletely understood. We employed dual-color super-resolution microscopy visualizing Gag assembly sites and HIV-1 Env proteins in virus-producing and in Env expressing cells. Distinctive HIV-1 Gag assembly sites were readily detected and were associated with Env clusters that always extended beyond the actual Gag assembly site and often showed enrichment at the periphery and surrounding the assembly site. Formation of these Env clusters depended on the presence of other HIV-1 proteins and on the long cytoplasmic tail (CT) of Env. CT deletion, a matrix mutation affecting Env incorporation or Env expression in the absence of other HIV-1 proteins led to much smaller Env clusters, which were not enriched at viral assembly sites. These results show that Env is recruited to HIV-1 assembly sites in a CT-dependent manner, while Env(ΔCT) appears to be randomly incorporated. The observed Env accumulation surrounding Gag assemblies, with a lower density on the actual bud, could facilitate viral spread . Keeping Env molecules on the nascent virus low may be important for escape from the humoral immune response, while cell-cell contacts mediated by surrounding Env molecules could promote HIV-1 transmission through the virological synapse

    Functional stability of HIV-1 envelope trimer affects accessibility to broadly neutralizing antibodies at its apex

    Get PDF
    ABSTRACT The trimeric envelope glycoprotein spike (Env) of HIV-1 is the target of vaccine development to elicit broadly neutralizing antibodies (bnAbs). Env trimer instability and heterogeneity in principle make subunit interfaces inconsistent targets for the immune response. Here, we investigate how functional stability of Env relates to neutralization sensitivity to V2 bnAbs and V3 crown antibodies that engage subunit interfaces upon binding to unliganded Env. Env heterogeneity was inferred when antibodies neutralized a mutant Env with a plateau of less than 100% neutralization. A statistically significant correlation was found between the stability of mutant Envs and the MPN of V2 bnAb, PG9, as well as an inverse correlation between stability of Env and neutralization by V3 crown antibody, 447-52D. A number of Env-stabilizing mutations and V2 bnAb-enhancing mutations were identified in Env, but they did not always overlap, indicating distinct requirements of functional stabilization versus antibody recognition. Blocking complex glycosylation of Env affected V2 bnAb recognition, as previously described, but also notably increased functional stability of Env. This study shows how instability and heterogeneity affect antibody sensitivity of HIV-1 Env, which is relevant to vaccine design involving its dynamic apex. IMPORTANCE The Env trimer is the only viral protein on the surface of HIV-1 and is the target of neutralizing antibodies that reduce viral infectivity. Quaternary epitopes at the apex of the spike are recognized by some of the most potent and broadly neutralizing antibodies to date. Being that their glycan-protein hybrid epitopes are at subunit interfaces, the resulting heterogeneity can lead to partial neutralization. Here, we screened for mutations in Env that allowed for complete neutralization by the bnAbs. We found that when mutations outside V2 increased V2 bnAb recognition, they often also increased Env stability-of-function and decreased binding by narrowly neutralizing antibodies to the V3 crown. Three mutations together increased neutralization by V2 bnAb and eliminated binding by V3 crown antibodies. These results may aid the design of immunogens that elicit antibodies to the trimer apex. </jats:p

    Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus (FIV)

    Get PDF
    Analysing the evolution of FIV on the intra-host level is important, in order to address whether the diversity and composition of viral quasispecies affects disease progression.&lt;p&gt;&lt;/p&gt; We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at the rate of 1.16 x 10-3 substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3-V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3-V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation.&lt;p&gt;&lt;/p&gt; Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximal evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared to HIV might explain why many naturally infected cats do not progress to AIDS rapidly.&lt;p&gt;&lt;/p&gt

    Local generalised method of moments: an application to point process-based rainfall models

    Get PDF
    Long series of simulated rainfall are required at point locations for a range of applications, including hydrological studies. Clustered point process-based rainfall models have been used for generating such simulations for many decades. These models suffer from a major limitation, however, their stationarity. Although seasonality can be allowed by fitting separate models for each calendar month or season, the models are unsuitable in their basic form for climate impact studies. In this paper, we develop new methodology to address this limitation. We extend the current fitting approach by allowing the discrete covariate, calendar month, to be replaced or supplemented with continuous covariates that are more directly related to the incidence and nature of rainfall. The covariate-dependent model parameters are estimated for each time interval using a kernel-based nonparametric approach within a generalised method-of-moments framework. An empirical study demonstrates the new methodology using a time series of 5-min rainfall data. The study considers both local mean and local linear approaches. While asymptotic results are included, the focus is on developing useable methodology for a complex model that can only be solved numerically. Issues including the choice of weighting matrix, estimation of parameter uncertainty and bandwidth and model selection are considered from this perspective

    On the effect of preferential sampling in spatial prediction

    No full text
    The choice of the sampling locations in a spatial network is often guided by practical demands. In particular, many locations are preferentially chosen to capture high values of a response, for example, air pollution levels in environmental monitoring. Then, model estimation and prediction of the exposure surface become biased due to the selective sampling. Since prediction is often the main utility of the modeling, we suggest that the effect of preferential sampling lies more importantly in the resulting predictive surface than in parameter estimation. Our contribution is to offer a direct simulation-based approach to assessing the effects of preferential sampling. We compare two predictive surfaces over the study region, one originating from the notion of an ‘operating’ intensity driving the selection of monitoring sites, the other under complete spatial randomness. We can consider a range of response models. They may reflect the operating intensity, introduce alternative informative covariates, or just propose a flexible spatial model. Then, we can generate data under the given model. Upon fitting the model and interpolating (kriging), we will obtain two predictive surfaces to compare. It is important to note that we need suitable metrics to compare the surfaces and that the predictive surfaces are random, so we need to make expected comparisons

    Complex interplay of kinetic factors governs the synergistic properties of HIV-1 entry inhibitors.

    Get PDF
    The homotrimeric HIV-1 envelope glycoprotein (Env) undergoes receptor-triggered structural changes that mediate viral entry through membrane fusion. This process is inhibited by chemokine receptor antagonists (CoRAs) that block Env-receptor interactions and by fusion inhibitors (FIs) that disrupt Env conformational transitions. Synergy between CoRAs and FIs has been attributed to a CoRA-dependent decrease in the rate of viral membrane fusion that extends the lifetime of the intermediate state targeted by FIs. Here, we demonstrated that the magnitude of CoRA/FI synergy unexpectedly depends on FI-binding affinity and the stoichiometry of chemokine receptor binding to trimeric Env. For C-peptide FIs (clinically represented by enfuvirtide), synergy waned as binding strength decreased until inhibitor combinations behaved additively. Curiously, this affinity dependence on synergy was absent for 5-Helix-type FIs. We linked this complex behavior to the CoRA dependence of Env deactivation following FI binding. For both FI classes, reducing chemokine receptor levels on target cells or eliminating competent chemokine receptor-binding sites on Env trimers resulted in a loss of synergistic activity. These data imply that the stoichiometry required for CoRA/FI synergy exceeds that required for HIV-1 entry. Our analysis suggests two distinct roles for chemokine receptor binding, one to trigger formation of the FI-sensitive intermediate state and another to facilitate subsequent conformational transitions. Together, our results could explain the wide variety of previously reported activities for CoRA/FI combinations. These findings also have implications for the combined use of CoRAs and FIs in antiviral therapies and point to a multifaceted role for chemokine receptor binding in promoting HIV-1 entry

    Envelope Determinants of Equine Lentiviral Vaccine Protection

    Get PDF
    Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection. © 2013 Craigo et al
    corecore