17 research outputs found

    Aspects of Quantum Field Theory in Enumerative Graph Theory

    Get PDF
    While a quantum field theorist has many uses for mathematics of all kinds, the relationship between quantum field theory and mathematics is far too fluid in the world of modern research to be described as the simple provision of mathematical tools to physicists, as Feynman often framed it. Problems large and small of a seemingly purely mathematical nature often arise directly from a physical setting. In this thesis we focus on two combinatorial problems with deep physical motivations. The first of these is the Quadrangulation Conjecture of Jackson and Visentin, which asks for a bijective proof of an identity relating numbers of maps to numbers of maps which are quadrangulations. We provide a set of auxiliary bijections culminating in a bijection between maps with marked spanning trees and chord diagrams with partitions of the chords into a non-crossing part and a ‘genus-g’ part, and a bijection between these partitioned chord diagrams and four-regular maps with marked Euler tours. The second problem comes from the CHY integral formulation of tree-level Feynman integrals in supersymmetric Yang-Mills theory, but amounts to the enumeration of ways to decompose 4-regular graphs into pairs of edge-disjoint Hamiltonian cycles. We show that for any graph which is the edge-disjoint union of an arbitrary 2-regular graph and a cycle, there are at least (n−2)!/4 ways to decompose the result into two full cycles. Moreover, if the chosen 2-regular graph consists of only even cycles this bound improves to (n − 2)!/2. Further, if the graph consists only of 2-cycles, we obtain the exact number of decompositions, which is (1/2) (n−2)!!S_H^±(n/2−1,1), where S_H^±(a,b) is the so-called signed Hultman number. Interestingly, this combinatorial problem turns out to have further connections to the study of genomic rearrangements in bioinformatics

    Enumeration of paths and cycles and e-coefficients of incomparability graphs

    Full text link
    We prove that the number of Hamiltonian paths on the complement of an acyclic digraph is equal to the number of cycle covers. As an application, we obtain a new expansion of the chromatic symmetric function of incomparability graphs in terms of elementary symmetric functions. Analysis of some of the combinatorial implications of this expansion leads to three bijections involving acyclic orientations

    Application of Graph Theory in Computer Science

    Get PDF
    The field of mathematics have important roll in various fields. One of the important area in mathematics is Graph Theory. Which used in structural modeling in many area’s. The structural arrangements of various objects or technologies lead to new inventions and modification in the existing environment for enhancement in those field. The field of graph theory started from problem of Konigsberg bridge in 1735. This paper given an overview of the application of graph theory in heterogeneous field to some extent but mainly focuses on computer science application but uses graph theoretical concepts

    A unified fluctuation formula for one-cut β\beta-ensembles of random matrices

    Get PDF
    Using a Coulomb gas approach, we compute the generating function of the covariances of power traces for one-cut β\beta-ensembles of random matrices in the limit of large matrix size. This formula depends only on the support of the spectral density, and is therefore universal for a large class of models. This allows us to derive a closed-form expression for the limiting covariances of an arbitrary one-cut β\beta-ensemble. As particular cases of the main result we consider the classical β\beta-Gaussian, β\beta-Wishart and β\beta-Jacobi ensembles, for which we derive previously available results as well as new ones within a unified simple framework. We also discuss the connections between the problem of trace fluctuations for the Gaussian Unitary Ensemble and the enumeration of planar maps.Comment: 16 pages, 4 figures, 3 tables. Revised version where references have been added and typos correcte

    The algebra of set functions I: The product theorem and duality

    Get PDF
    AbstractWe give a comprehensive introduction to the algebra of set functions and its generating functions. This algebraic tool allows us to formulate and prove a product theorem for the enumeration of functions of many different kinds, in particular injective functions, surjective functions, matchings and colourings of the vertices of a hypergraph. Moreover, we develop a general duality theory for counting functions

    Graph Theory Applications in Advanced Geospatial Research

    Full text link
    Geospatial sciences include a wide range of applications, from environmental monitoring transportation to infrastructure planning, as well as location-based analysis and services. Graph theory algorithms in mathematics have emerged as indispensable tools in these domains due to their capability to model and analyse spatial relationships efficiently. This article explores the applications of graph theory algorithms in geospatial sciences, highlighting their role in network analysis, spatial connectivity, geographic information systems, and various other spatial problem-solving scenarios like digital twin. The article provides a comprehensive idea about graph theory's key concepts and algorithms that assist the geospatial modelling processes and insights into real-world geospatial challenges and opportunities. It lists the extensive research, innovative technologies and methodologies implemented in this domain

    Minors for alternating dimaps

    Full text link
    We develop a theory of minors for alternating dimaps --- orientably embedded digraphs where, at each vertex, the incident edges (taken in the order given by the embedding) are directed alternately into, and out of, the vertex. We show that they are related by the triality relation of Tutte. They do not commute in general, though do in many circumstances, and we characterise the situations where they do. The relationship with triality is reminiscent of similar relationships for binary functions, due to the author, so we characterise those alternating dimaps which correspond to binary functions. We give a characterisation of alternating dimaps of at most a given genus, using a finite set of excluded minors. We also use the minor operations to define simple Tutte invariants for alternating dimaps and characterise them. We establish a connection with the Tutte polynomial, and pose the problem of characterising universal Tutte-like invariants for alternating dimaps based on these minor operations.Comment: 51 pages, 7 figure
    corecore