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a b s t r a c t

We give a comprehensive introduction to the algebra of set
functions and its generating functions. This algebraic tool allows us
to formulate and prove a product theorem for the enumeration of
functions of many different kinds, in particular injective functions,
surjective functions, matchings and colourings of the vertices of
a hypergraph. Moreover, we develop a general duality theory for
counting functions.
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1. Introduction

The algebra of set functions has been briefly introduced in order to count matchings [3,5,6],
colourings and acyclic orientations [4]. In this paper we want to study this algebra in a more
systematic way. Ordinary and exponential generating functions have always been the favourite tool
in enumerative combinatorics. Generating functions for set functions offer the same advantages and
increase the range of applications. In fact, exponential generating functions operate on set functions,
and it is even possible toworkwith derivatives of set functions. Combinatorial techniques likeMöbius
inversion are then replaced by standard algebraic operations. For example, the product rule for
differentiation reflects the most fundamental set theoretic fact:

x ∈ X1 ⊎ X2 ⇔ x ∈ X1 or x ∈ X2. (1.1)

Many applications of the algebra of set functions have their origin in a product theorem for the
enumeration of functions. The basic idea is the following. If we have a function, then we can look
at the preimage of every element of its codomain. This defines a partition of its domain into blocks.
Moreover, the function is injective if and only if the size of every block of the partition of the domain
is 0 or 1, and it is surjective if and only if no block is an empty set. Therefore, studying partitions of
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the domain makes it possible to count many kinds of functions, and this is what the algebra of set
functions can do via the product theorem. It even works with multiplicative weights.

In Section 2 the basic theory of set functions is fully developed. Our fundamental result, namely
the product theorem, is stated and proved in Section 3. The last part, Section 4, is devoted to a general
‘‘global’’ duality theory for the enumeration of functions. This theory does not use the ‘‘local’’ set
functions and works with weights which just have to form an abelian group. Many applications to
the enumeration of matchings in bipartite graphs will be given in the subsequent article [7].

2. The algebra of set functions

In this article, A will always be a commutative ring with identity element. Usually, A is just the
ring of integers Z, but it can also be the field of complex numbers C or the ring of polynomials with
complex coefficients C[x].

Let us denote by N the nonnegative integers. A sequence of numbers is exactly the same as a
function f :N→ A. It is quite usual in enumerative combinatorics to associate with such a function a
power series, namely

Ff (x) =
∞
n=0

f (n) · xn (ordinary generating function) or (2.1)

Ff (x) =
∞
n=0

f (n) ·
xn

n!
(exponential generating function). (2.2)

In this way, the functions f :N → A become an A-module. More precisely, for any f , g:N → A, we
can define the sum f + g:N→ A with the help of the generating functions: Ff+g(x) = Ff (x)+ Fg(x).
Of course, it was not necessary to use generating functions for this. We could have defined directly
( f + g)(n) = f (n)+ g(n) for every n ∈ N. In the same way, for any element of our commutative ring
a ∈ A and any function f :N → A, we can define a · f :N → A either with the help of the generating
functions: Fa·f (x) = a·Ff (x) or directly: (a·f )(n) = a·f (n). Last but not least, workingwith generating
functions turns the functions f :N→ A into an algebra. Indeed, we can define the product f ·g:N→ A
of two functions f , g:N→ A by Ff ·g(x) = Ff (x) ·Fg(x), but here wemust pay attention. This definition
means

( f · g)(n) =
n

k=0

f (k) · g(n− k) for ordinary generating functions but (2.3)

( f · g)(n) =
n

k=0

n
k


· f (k) · g(n− k) for exponential generating functions. (2.4)

In other words, the algebra structure of number sequences depends on the generating functions that
weworkwith. In enumerative combinatorics, however, number sequences are not the only interesting
objects. We have seen already in the introduction that set functions appear naturally. Therefore we
want to study their algebra structure carefully.

Let X be a finite set of cardinality n. We denote by 2X the family of finite subsets of X , which has of
course cardinality 2n. Let F (2X , A) be the A-algebra of set functions f , g: 2X

→ A, equipped with the
multiplication

( f · g)(X ′) =


X1⊎X2=X ′
f (X1) · g(X2) ∀∅ ⊆ X ′ ⊆ X (2.5)

(where ⊎ denotes disjoint union) and the obvious pointwise addition ( f + g)(X ′) = f (X ′) + g(X ′)
and scalar multiplication (a · f )(X ′) = a · f (X ′) for every ∅ ⊆ X ′ ⊆ X and for every a ∈ A.

Next let A[X] be the A-algebra of multiaffine ( = square-free) polynomials

F(χ) =

X ′⊆X

aX ′ · χX ′ , aX ′ ∈ A ∀∅ ⊆ X ′ ⊆ X (2.6)
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in the n indeterminates χ = (χx)x∈X , where we use the shorthand notation

χX ′
=


x∈X ′

χx, χ∅ := 1. (2.7)

This algebra is equipped with the usual multiplication of polynomials followed by extraction of the
multiaffine part (i.e. discarding all monomials that are not of the form χX ′ for some X ′ ⊆ X), that is

X ′⊆X

aX ′ · χX ′

·


X ′⊆X

bX ′ · χX ′

=


X ′⊆X


X1⊎X2=X ′

aX1bX2 · χ
X ′ , (2.8)

together with the usual addition and scalar multiplication. Note that A[X] is isomorphic in an obvious
way to the quotient algebra A[{χx}]/⟨{χ

2
x }⟩.

Remark. In a more combinatorial way, we could have defined themultiplication of monomials for all
X1, X2 ⊆ X by

χX1 · χX2 := χX1+X2 , where (2.9)

X1 + X2 :=


X1 ∪ X2, if X1 ∩ X2 = ∅,
Ď, if X1 ∩ X2 ≠ ∅,where (2.10)

Ď+X ′ := Ď, Ď+ Ď := Ď, and χĎ
:= 0. (2.11)

Here Ď corresponds to multisets that are systematically discarded.

Finally, the map f → Ff that associates the generating polynomial Ff ∈ A[X] with each set function
f ∈ F (2X , A), i.e.

Ff (χ) =

X ′⊆X

f (X ′) · χX ′ , (2.12)

is manifestly an algebra isomorphism of F (2X , A) onto A[X]. In other words, we have Ff ·g(χ) =

Ff (χ) · Fg(χ), Ff+g(χ) = Ff (χ) + Fg(χ) and Fa·f (χ) = a · Ff (χ) for every f , g ∈ F (2X , A) and
for all a ∈ A. Many applications of our algebra of set functions A[X] in different parts of enumerative
graph theory can be found in [3–6].

For |X | = ∞ let (2X )fin be the partially ordered set of all finite subsets of X . We have the canonical
projections pX1,X2 : A[X1] → A[X2] (X1, X2 ∈ (2X )fin, X1 ⊇ X2) and define

A[X] := lim
←−

A[X ′], X ′ ∈ (2X )fin (2.13)

with the help of the projective limit. This means nothing else than working with generating functions
of the form

F(χ) =


X ′∈(2X )fin

aX ′ · χX ′ , aX ′ ∈ A ∀∅ ⊆ X ′ ⊆ X . (2.14)

Now for any X (finite or infinite), we consider the particular element

X :=

x∈X

χ {x} =

x∈X

χx (2.15)

in A[X]: it is the generating function for the indicator function of the subsets of X of cardinality 1.
Then, in the product Xk in the algebra A[X], each set of cardinality k occurs k! times, so Xk/k! is the
generating function for the indicator function of the subsets of X of cardinality k. If now g:N→ A is
an A-valued function on the natural numbers, the identity

∞
k=0

g(k) ·
Xk

k!
=


X ′∈(2X )fin

g(|X ′|) · χX ′ (2.16)
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provides an embedding of the algebra A![[X]] of generating functions of exponential type (usually the
variable is called x instead of X) into our algebra A[X] if and only if |X | = ∞. Simply remark that if
k > |X |, thenXk/k! = 0. If |X | = ∞, the image of this embedding is the subalgebra of A[X] consisting
of all generating functions Ff of set functions f , where the value depends only on the cardinality of
the set, i.e. f (X ′) = g(|X ′|) for every X ′ ∈ (2X )fin. This embedding is at the origin of (almost?) all
the applications of A![[X]] in combinatorics, but it requires the existence of an infinite combinatorial
model depending just on cardinalities. Consequently, A[X] provides more flexibility and closeness to
combinatorics; it is also ideally suited for computer calculations.

Remark. The ring Z![[X]] is not noetherian, but it contains the important functions exp(X) and
log(1+X).

Example. If char A = 2, then we have

(1+X)−1 =

∞
k=0

(−1)kk! ·
Xk

k!
(2.17)

≡ 1+X and (2.18)

log(1+X) =

∞
k=1

(−1)k−1(k− 1)! ·
Xk

k!
(2.19)

≡ X+
X2

2
(2.20)

in the ringA![[X]]. These identities are at the origin of lots of results on parity in combinatorics; see [6].

For all t ∈ A let (t · χ)X
′

:= t |X
′
|
· χX ′ , X ′ ∈ (2X )fin, and therefore

Ff (t · χ) =


X ′∈(2X )fin

f (X ′) t |X
′
|
· χX ′ , (2.21)

where f : (2X )fin → A is an arbitrary set function. It is evident that this definition is compatible with
the addition and the multiplication, in particular (t · χ)X1 · (t · χ)X2 = (t · χ)X1+X2 . Most important
are the special cases t = −1 and t = 0: Ff (0) = Ff (0 · χ) = f (∅).

We define the degree of a set function f : (2X )fin → A by

deg Ff (χ) := min{n ∈ N | ∃ X ′ ∈ (2X )fin such that |X ′| = n and f (X ′) ≠ 0}, (2.22)

where the minimum over an empty set is∞, that is, the set function which is zero for every subset
of X has the degree∞. Our definition implies deg


χX1 · χX2


≥ deg


χX1


+ deg


χX2


and, more

generally,

deg

Ff (χ) · Fg(χ)


≥ deg


Ff (χ)


+ deg


Fg(χ)


(2.23)

for arbitrary f , g: (2X )fin → A. It is interesting to remark that these inequalities are not satisfied for
other natural definitions of X1 + X2 such as X1 + X2 = X1 ∪ X2.

If Ff (0) = f (∅) = 0, i.e. deg

Ff (χ)


≥ 1, then deg


Ff (χ)k


≥ k for every k ∈ N. Moreover,

Ff (χ)k/k! is defined for any ring A, because a partition into k nonempty subsets can be ordered in k!
different ways. Thus, we have an operation of A![[X]] on A[X] via the substitution G( Ff (χ)) defined
for any G ∈ A![[X]] (all calculations in A are finite). The following proposition is now easy to prove.

Proposition 1. The set function Ff (χ) is invertible if and only if Ff (0) = f (∅) is invertible. In that case
Ff (χ)−1 = Ff−1(χ), where f −1: (2X )fin → A can be calculated recursively by using f −1(∅) = f (∅)−1 and

f −1(X ′) = f (∅)−1 ·


−


∅⊂X ′′⊆X ′

f (X ′′) · f −1(X ′ \ X ′′)


(2.24)
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for all ∅ ⊂ X ′ ⊆ X. Moreover, if Fg(0) = g(∅) = 0, then the inverse of 1+ Fg(χ) can also be calculated
by substituting Fg(χ) into (1+X)−1, that is


1+ Fg(χ)

−1
=

∞
k=0

(−1)kk! ·
Fg(χ)k

k!
. (2.25)

If char A = 2, this reduces to

1+ Fg(χ)

−1
≡ 1+ Fg(χ). �

Example. For two set functions f , g: (2X )fin → A we have the following equivalence:

Fg(χ) = exp(X) · Ff (χ) ⇔ Ff (χ) = exp(−X) · Fg(χ). (2.26)

In other words,

g(X ′) =

X ′′⊆X ′

f (X ′′) ∀ X ′ ∈ (2X )fin ⇔

f (X ′) =

X ′′⊆X ′

(−1)|X
′
\X ′′|g(X ′′) ∀ X ′ ∈ (2X )fin. (2.27)

This is nothing else than the famous inclusion–exclusion principle, also known as the sieve principle.

Finally, for every x ∈ X , we use the derivatives ∂x defined by

∂x χX ′
:=


χX ′ , if x ∈ X ′

0, otherwise.
(2.28)

The product rule

∂x Ff (χ) · Fg(χ)

=

∂xFf (χ)


· Fg(χ)+ Ff (χ) ·


∂xFg(χ)


(2.29)

is the algebraic analogue of the most fundamental set theoretic fact:

x ∈ X1 ⊎ X2 ⇔ x ∈ X1 or x ∈ X2. (2.30)

In this way, combinatorial arguments where two cases have to be distinguished can be replaced by
differential calculus. The product rule immediately implies that ∂x


Ff (χ)

n
= n ·


Ff (χ)

n−1
·∂xFf (χ),

i.e., it implies the chain rule:

∂x G(Ff (χ))

= G′(Ff (χ)) · ∂xFf (χ), G ∈ A![[X]]. (2.31)

Remark. Under the algebra isomorphism A[X] ≃ A[{χx}]/⟨{χ
2
x }⟩, ∂

x does not correspond to ∂/∂χx,
but to χx · ∂/∂χx. The partial derivative ∂/∂χx cannot be defined in A[X].

For any weight function w: X → A, we can also use the differential operator

∂w :=


x∈X

w(x) · ∂x, (2.32)

which is the general form of a differential operator forwhich the product rule is satisfied. In particular,
if w(x) = 1 for every x ∈ X , we let ∂w = ∂ . This means that

∂Ff (χ) =
d
dt

Ff (t · χ)


t=1
=


∅⊆X ′⊆X

f (X ′) · |X ′| · χX ′ . (2.33)

If now g:N→ A is an A-valued function on the natural numbers, then

∂

∞
k=0

g(k) ·
Xk

k!
=

∞
k=0

g(k) · k ·
Xk

k!
= X

d
dX

∞
k=0

g(k) ·
Xk

k!
. (2.34)

It is remarkable that Pólya and Szegö [8] introduceX d
dX as ‘‘the’’ differential operator for power series.
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Example. For two set functions f , g: (2X )fin → A with f (∅) = g(∅) = 0 we have the following
equivalence:

1+ Fg(χ) = exp

Ff (χ)


⇔ Ff (χ) = log


1+ Fg(χ)


. (2.35)

In other words,

g(X ′) =
∞
k=1


B1⊎···⊎Bk=X ′

k
i=1

f (Bi) ∀X ′ ∈ (2X )fin \ ∅ ⇔

f (X ′) =
∞
k=1

(−1)k−1(k− 1)!


B1⊎···⊎Bk=X ′

k
i=1

g(Bi) ∀X ′ ∈ (2X )fin \ ∅. (2.36)

This is nothing else than Möbius inversion for the lattice of partitions, for generalized multiplicative
functions (i.e. the value on a partition is the product of the values on its blocks; but the latter may
depend on the block and not just on its cardinality; see [1], chapter V.1.C, and [2], chapter 5.2). Our
equivalence (2.35) can be continued:

Ff (χ) = log

1+ Fg(χ)


(2.37)

⇔ ∂xFf (χ) = ∂x log

1+ Fg(χ)


∀ x ∈ X (2.38)

⇔

1+ Fg(χ)


· ∂xFf (χ) = ∂xFg(χ) ∀ x ∈ X (2.39)

⇔ f (X ′)+


x∈X ′′⊂X ′
f (X ′′)g(X ′ \ X ′′) = g(X ′) ∀ x ∈ X ′ ⊆ X . (2.40)

If char A = 0, then we also get the equivalences

Ff (χ) = log

1+ Fg(χ)


(2.41)

⇔ ∂Ff (χ) = ∂ log

1+ Fg(χ)


(2.42)

⇔

1+ Fg(χ)


· ∂Ff (χ) = ∂Fg(χ) (2.43)

⇔ |X ′|f (X ′)+

∅⊂X ′′⊂X ′

|X ′′|f (X ′′)g(X ′ \ X ′′) = |X ′|g(X ′) ∀ ∅ ⊂ X ′ ⊆ X . (2.44)

All those equivalences have the great advantage that they use just one single product of set functions.
This is particularly useful for calculating the logarithm of a set function by computer.

3. The product theorem for counting functions

For finite sets X and Y let T be a family of functions t: X ′ → Y ′, X ′ ⊆ X , Y ′ ⊆ Y . In order to evaluate
the number of those functions, we consider a partition Y ′ = Y1 ⊎ Y2, which induces a partition of X ′
via t , namely X ′ = t−1(Y1) ⊎ t−1(Y2).

Definition. The family of functions T is called partitionable if the following conditions are satisfied:
(a) For every t ∈ T , t: X ′ → Y ′, and Y ′ = Y1 ⊎ Y2, the two functions t|t−1(Y1): t

−1(Y1) → Y1 and
t|t−1(Y2): t

−1(Y2)→ Y2 also belong to the family T .
(b) For any t1, t2 ∈ T , t1: X1 → Y1, t2: X2 → Y2, with X1 ∩ X2 = Y1 ∩ Y2 = ∅, there exists exactly

one t ∈ T , t: X1 ∪ X2 → Y1 ∪ Y2 such that t|X1 = t1 and t|X2 = t2.
In particular, there is exactly one t0 ∈ T : t0:∅ → ∅, and there are no further functions of the form

t: X ′ → ∅. Moreover, there is exactly one function of the form t:∅ → Y ′ if every y ∈ Y ′ can have an
empty preimage; if one y ∈ Y ′ has to have a nonempty preimage, then there is no function t:∅ → Y ′.

From now on, we will only make use of partitionable families of functions. This is not very
restrictive as can be seen in the following proposition.
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Proposition 2. The family of surjective functions is partitionable, the family of injective functions is
partitionable, and the family of bijective functions is partitionable. If G = (X, Y ; E) is a bipartite graph,
then the family of functions respecting its edges (that is (x, t(x)) must always be an edge of G) is also
partitionable. If a hypergraph is defined on X (its so-called hyperedges form just a family of subsets of X)
and if Y is considered as a set of colours, then colourings of X ′ using colours of Y ′ without monochromatic
hyperedges are partitionable. Moreover, the intersection of two partitionable families of functions is also
partitionable.

Proof. It is sufficient to verify that for any t1: X1 → Y1, t2: X2 → Y2 with X1 ∩ X2 = Y1 ∩ Y2 = ∅, and
t: X1 ∪ X2 → Y1 ∪ Y2 with t|X1 = t1 and t|X2 = t2, we have the following equivalences:

The function t is surjective if and only if t1 and t2 are surjective. The function t is injective if and
only if t1 and t2 are injective. The function t is bijective if and only if t1 and t2 are bijective. The function
t respects the edges of a bipartite graph G = (X, Y ; E) if and only if t1 and t2 respect its edges. The
function t is a colouring without monochromatic hyperedges if and only if t1 and t2 are colourings of
this type. �

Let T be a partitionable family of functions. If wewant to count all t : X ′ → Y ′ with X ′ ⊆ X , Y ′ ⊆ Y
and t ∈ T , then we can fix a partition Y ′ = Y1 ⊎ Y2. Next, for all partitions X ′ = X1 ⊎ X2, we just have
to count the number of functions t1: X1 → Y1 with t1 ∈ T and the number of functions t2: X2 → Y2
with t2 ∈ T . If we multiply the two results and sum over all partitions X ′ = X1 ⊎X2 we get exactly the
desired result. Therefore, for every Y ′ ⊆ Y , we define the set function

T Y ′(χ) :=

∅⊆X ′⊆X

|{t ∈ T |t: X ′ → Y ′}| · χX ′ . (3.1)

The argument that we have just presented proves now the following lemma.

Lemma 1. For finite sets X and Y let T be a partitionable family of functions t: X ′ → Y ′, X ′ ⊆ X, Y ′ ⊆ Y .
Then, for any partition Y ′ = Y1 ⊎ Y2 we have the following identity:

T Y ′(χ) = T Y1(χ) · T Y2(χ). � (3.2)

If we apply our lemma several times, we get the main theorem of this section.

Theorem 1 (Product Theorem). For finite sets X and Y , let T be a partitionable family of functions
t: X ′ → Y ′, X ′ ⊆ X, Y ′ ⊆ Y . Then for any Y ′ ⊆ Y the following identity holds:

T Y ′(χ) =

y∈Y ′

T {y}(χ). (3.3)

In particular,

T∅(χ) = 1 and T Y ′(0) =

y∈Y ′

T {y}(0). (3.4)

For any y ∈ Y and X ′ ⊆ X the coefficient of χX ′ in T {y}(χ) is 1 if t: X ′ → {y} belongs to T and 0 otherwise.
Those coefficients determine a family of partitionable functions uniquely. �

Example. If T is the family of injective functions, then T {y}(χ) = 1+X because a function is injective
if and only if the preimage of every y ∈ Y is either the empty set or a one-element subset of X .
Therefore, the product theorem implies

T Y (χ) =

y∈Y

T {y}(χ) = (1+X)|Y | =

|X |
k=0


|Y |
k


Xk
=

|X |
k=0

|Y |k ·
Xk

k!
, (3.5)

where |Y |k = |Y |(|Y |−1)(|Y |−2) · · · (|Y |−k+1) by definition. The coefficient ofχX in T Y (χ) counts
the number of injective functions from X to Y . It is equal to |Y ||X | = |Y |(|Y | − 1)(|Y | − 2) · · · (|Y | −
|X | + 1), as expected.
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Definition. A weight function w: T → A is called multiplicative if for every t: X ′ → Y ′, (X ′ ⊆ X ,
Y ′ ⊆ Y , t ∈ T ) and Y ′ = Y1 ⊎ Y2 we have

w(t) = w(t|t−1(Y1)) · w(t|t−1(Y2)), (3.6)

where t|t−1(Y1): t
−1(Y1)→ Y1, t|t−1(Y2): t

−1(Y2)→ Y2, and in particular w(t0) = 1 for t0:∅ → ∅.

Example. If a hypergraph is defined on X (its so-called hyperedges form just a family of subsets of X)
and if Y is considered as a set of colours, we can study colourings c: X ′ → Y ′ with X ′ ⊆ X and Y ′ ⊆ Y .
Let m(c) be the number of monochromatic hyperedges in X ′. Then, for every a ∈ A (or for a variable
a), w(c) = am(c) is a multiplicative weight function.

In the same spirit as previously, for every Y ′ ⊆ Y , let us define the set function

T Y ′
w (χ) :=


∅⊆X ′⊆X

 
t:X ′→Y ′, t∈T

w(t)


· χX ′ (3.7)

(in the unweighted case, the weight of every function from T was 1). Then, we get again a product
theorem.

Theorem 2 (Weighted Product Theorem). For finite sets X and Y let T be a partitionable family of
functions t: X ′ → Y ′, X ′ ⊆ X, Y ′ ⊆ Y and let w: T → A be a multiplicative weight function. Then,
for any Y ′ ⊆ Y the following identity holds:

T Y ′
w (χ) =


y∈Y ′

T {y}w (χ). (3.8)

In particular,

T∅w(χ) = 1 and T Y ′
w (0) =


y∈Y ′

T {y}w (0). � (3.9)

Without loss of generality, it is possible in the weighted case to take for T the partitionable family
of all functions t: X ′ → Y ′, as functions which do not belong to the original T can just get theweight 0.

On the other hand, if we choose for every y ∈ Y an arbitrary set function T {y}w (χ) ∈ A[X] and if
we consider the previous theorem as a definition, then we automatically get a partitionable family
of functions with a multiplicative weight function. This situation is characterized by the fact that, for
every y ∈ Y , we can choose independently which subsets X ′ ⊆ X may be mapped to y and what kind
of weight we want to use for every X ′ ⊆ X .

In that case, T Y ′
w (χ) counts functions to Y ′ in such a way that every y ∈ Y ′ contributes a

multiplication with the coefficient of χ t−1{y} in T {y}w (χ). In particular, every y ∈ Y ′ that is not in
the image of t contributes a multiplication with T {y}w (0). Therefore T Y ′

w (χ) counts weighted surjective
functions to Y ′ ⊆ Y if T {y}w (0) = 0 for every y ∈ Y . If T {y}w (0) = 1 for every y ∈ Y , then T Y ′

w (χ) counts
arbitrary weighted functions to Y ′.

4. Duality for the enumeration of functions

For finite sets X and Y let T be a set of functions t: X → Y , and letw: T → A be aweight function. In
this section,Aneed not be a ring: it is sufficient to have an abelian group.Without loss of generality,we
can (and will) assume that T is the set of all the |Y ||X | possible functions t: X → Y , because functions
which did not belong to the original T can just get the weight 0.

If |X | = 1, then we have |Y | different functions and therefore |Y | weights. Those weights can
be considered as a vector with |Y | elements from our abelian group A. Let s be the sum of those |Y |
weights. It is possible, in a unique way, to find one additional element of A, namely −s, and to form
a vector with |Y | + 1 elements, namely our original |Y | weights and the additional weight, in such a
way that the sum of all the weights of our new vector of length |Y | + 1 equals 0.
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This completely trivial observation becomes more interesting if |X | = 2. In that case, we have |Y |2
different functions and therefore |Y |2 weights forming a matrix of size |Y | × |Y |. Now it is possible,
in a unique way, to add exactly one row and one column to our matrix in order to get a matrix of size
(|Y | + 1)× (|Y | + 1) with the property that every row sum and every column sum of it equals 0. This
is still almost trivial, but already a little bit tricky for the element which is both in the new row and
in the new column. This element, however, has to be equal to the sum of all elements of our original
matrix of size |Y | × |Y |.

If |X | = 3, our weights form a cube of size |Y | × |Y | × |Y |, which can be embedded uniquely in a
cube of size (|Y | + 1) × (|Y | + 1) × (|Y | + 1) in such a way that the sum of the elements of every
row, every column and every pillar becomes 0, etc. Wewant to formalize those ideas rigorously in the
language of functions.

Definition. The pair (T , w) is called normal if for every x ∈ X and for every test function t∗: X \{x} →
Y we have 

t:X→Y , t|X\{x}=t∗
w(t) = 0. (4.1)

Usually, (T , w) is not normal, but we have the following proposition.

Proposition 3. The pair (T , w) can be normalized in a unique way by adding one new element y to the
set Y . Thereby the function t ′: X → Y ∪ {y} gets the weight

w(t ′) = (−1)|t
′−1(y)

|


t:X→Y , t|t′−1(Y )=t
′|t′−1(Y )

w(t). (4.2)

Proof. If we choose the weights according to the preceding formula, then the situation becomes
normal: for every test function t∗: X \ {x} → Y ∪ {y}we get

t ′:X→Y∪{y}, t ′|X\{x}=t∗
w(t ′) =


t ′:X→Y∪{y}, t ′|X\{x}=t∗, t ′(x)∈Y

w(t ′)

+


t ′:X→Y∪{y}, t ′|X\{x}=t∗, t ′(x)=y

w(t ′)

= (−1)|t
∗−1(y)|


t:X→Y , t|

t∗−1(Y )
=t∗|

t∗−1(Y )

w(t)

+ (−1)|t
∗−1(y)∪{x}|


t:X→Y , t|

t∗−1(Y )
=t∗|

t∗−1(Y )

w(t)

= 0, (4.3)

as desired. On the other hand, if we want to have normality, we must choose the weights as indicated
in the proposition. This can be proved easily by induction on |t ′−1(y)|. The basis |t ′−1(y)| = 0 is
evident. But if x ∈ t ′−1(y), the normality and the inductive hypothesis imply

w(t ′) = −


t ′′:X→Y∪{y}, t ′′|X\{x}=t ′|X\{x}, t ′′(x)∈Y

w(t ′′)

= (−1)|t
′−1(y)|


t:X→Y , t|t′−1(Y )

=t ′|t′−1(Y )

w(t). � (4.4)
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Now choose for every x ∈ X some Yx ⊆ Y and join x to every y ∈ Yx by an edge. The bipartite graph
obtained in this way will be denoted by G = (X, Y ; E). If for some x ∈ X we choose the set Y \ Yx
instead of Yx, then, instead of G, we obtain its partial complement denoted by Cx(G). In general, for
any X ′ ⊆ X , we can define the complement CX ′(G) with respect to X ′ by replacing, for every x ∈ X ′,
the set Yx by Y \ Yx. It is evident that for all X ′, X ′′ ⊆ X we have CX ′(CX ′′(G)) = CX ′∆X ′′(G), where ∆

denotes the symmetric difference of two sets. Naturally, C∅(G) = G and CX (G) = G, where G is called
the bipartite complement of G. Finally, we define W (T , w,G) as the weighted number of functions
from T which respect the edges of G, that is

W (T , w,G) =


t:X→Y , t(x)∈Yx ∀x∈X

w(t). (4.5)

Let us suppose that (T , w) is normal, and let us fix some x ∈ X . If we sum, for every test function
t∗: X \ {x} → Y respecting the edges of G, the condition of normality (see the previous definition),
then we get the relationW (T , w,G)+W (T , w, Cx(G)) = 0. This proves the following theorem.

Theorem 3 (Duality Theorem). Let (T , w) be normal. Then, for every x ∈ X,

W (T , w, Cx(G)) = −W (T , w,G). (4.6)

More generally, for any X ′ ⊆ X,

W (T , w, CX ′(G)) = (−1)|X
′
|W (T , w,G), (4.7)

and in particular,

W (T , w,G) = (−1)|X |W (T , w,G). � (4.8)

Remark. On the other hand, if t∗: X \{x} → Y is a test function and if forGwe choose the graphwhich
has the |X | − 1 edges (x′, t∗(x′)) with x′ ∈ X \ {x}, then the equationW (T , w, Cx(G)) = −W (T , w,G)
implies the normality condition (see the preceding definition).
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