43,468 research outputs found
Field-induced diastereomers for chiral separation
A novel approach for the state-specific enantiomeric enrichment and the
spatial separation of enantiomers is presented. Our scheme utilizes techniques
from strong-field laser physics, specifically an optical centrifuge in
conjunction with a static electric field, to create a chiral field with defined
handedness. Molecular enantiomers experience unique rotational excitation
dynamics and this can be exploited to spatially separate the enantiomers using
electrostatic deflection. Notably, the rotational-state-specific enantiomeric
enhancement and its handedness is fully controllable. To explain these effects,
we introduce the conceptual framework of
of a chiral molecule and perform robust quantum mechanical simulations on the
prototypical chiral molecule propylene oxide (CHO), for which ensembles
with an enantiomeric excess of up to were obtained
Characterization of the conglomerate form of acetyl-dl-leucine by thermal analysis and solubility measurements
Starting from a mixture of enantiomers in solution, crystallization can generate different types of crystals. In order to determine which type of crystal is obtained in the case of acetylleucine, an active pharmaceutical ingredient (API), analytical methods have been used to partially elucidate the binary and ternary phase diagrams of the system composed of the two enantiomers and water.The melting temperature phase diagram of this compound has been obtained by using differential scanning calorimetry (DSC) analyzes. The results show that it is characteristic of a conglomerate. This mode of crystallization has also been confirmed by X-ray powder diffraction analysis. Solubility measurements of enantiomerical mixtures in water enabled the determination of the ternary diagram of solubility. The empiric Meyerhoffer double solubility rule has been modified, due to the characterization of interactions between enantiomers
Chiral drugs : one drug or two? : Clinical pharmacology through the looking glass : reflections on the racemate vs enantiomer debate
Most of the synthetic chiral agents administered as drugs are still marketed as racemic mixtures. Such drug enantiomers can differ substantially in their pharmacological, pharmacokinetic and toxic properties. The development of enantiomerically pure drugs would lead to better therapeutic indices, and less complex interactions. Thus, the re-realisation of the importance of stereochemistry in pharmacology has an important contribution to make to the development and use of safer and more effective medicines. The impact of chirality on drug development and registration policies is discussed.peer-reviewe
Complex formation and enantioselectivity studies of triazole fungicide and organophosphorus pesticide enantiomers using capillary electrophoresis
Several cyclodextrin modified-micellar electrokinetic chromatography (CDMEKC) methods were developed for the successful triazole fungicides separation. In the first part, an efficient method was developed for the simultaneous enantioseparation of cyproconazole (4 stereoisomer), bromuconazole (4 stereoisomer) and diniconazole (2 stereisomer) enantiomers using CD-MEKC with a dual mixture of neutral cyclodextrins as chiral selector. The best simultaneous separation of cyproconazole, bromuconazole, and diniconazole enantiomers was achieved with a mixture of 27 mM HP-β-CD and 3 mM HP-γ-CD in 25 mM phosphate buffer (pH 3.0) containing 40 mM sodium dodecyl sulfate (SDS) and 15% iso-propanol as organic modifier. Complete separation of 10 stereoisomer of triazole fungicides were obtained in a single run with good resolution (Rs 1.74“26.31) and high peak efficiency (N > 400 000). In the second part of the study, enantioseparation of hexaconazole, penconazole, myclobutanil, and triadimefon was investigated. Simultaneous enantioseparation of penconazole, myclobutanil, and triadimefon was achieved under acidic condition (pH 3.0) using 25 mM phosphate buffer, 50 mM SDS, and 30 mM HP-γ-CD, with Rs greater than 0.9 whereas, simultaneous enantioseparation of hexaconazole, penconazole, and myclobutanil was successfully achieved under neutral condition (pH 7.0) using 25 mM phosphate buffer, 40 mM SDS, and 40 mM HP-γ-CD, with Rs greater than1.6. In order to improve detection sensitivity, on-line preconcentration technique was investigated. It was found that sweeping technique as an on-line preconcentration technique improved the detection sensitivity of the enantioseparation of cyproconazole, bromuconazole, and diniconazole by 30 to 60-fold, with good repeatabilities in the migration time, peak area and peak height were obtained with RSDs in the range of 0.08“0.32%, 0.03“ 2.44%, and 2.13“8.44% respectively. Furthermore, sweeping technique improved the detection sensitivity of the enantioseparation of hexaconazole, penconazole and myclobutanil by 62- to 67-fold. Good repeatabilities in the migration time, peak area and peak height were obtained with RSDs in the range of 2.39“3.90%, 1.96€“6.15%, and 2.80“6.64% respectively. Finally, the formation constant of diniconazole enantiomers with HP-γ-CD under neutral and acidic condition was investigated using CD-MEKC
Development of novel chiral capillary electrophoresis methods for the serotonin receptor (5-HT2A) antagonist MDL 100,907 (volinanserin) and for its key intermediate compound
Enantioselective capillary electrophoretic methods were elaborated for the determination of the enantiomeric purity of (R)-MDL 100,907 and its preparatively resolved key intermediate compound during the synthesis route. The pKa values of the intermediate compound and the end product determined by CE were 10.5±0.1 and 9.0±0.1, respectively. The enantiopurity of the intermediate compound can be monitored in fully protonated state by applying 15mM sulfobutylether-β-cyclodextrin at pH 5 when the peak belonging to the impurity migrates before the main component. The fact that the consecutive steps of the synthesis do not affect the enantiomeric purity was verified by the other, newly developed CE method. The enantiomers of rac-MDL 100,907 were resolved by 15mM carboxymethyl-γ-cyclodextrin at pH 3. The applicability (selectivity, LOD, LOQ, repeatability, precision and accuracy) of the methods was studied as well
Focus on chirality of HIV-​1 non-​nucleoside reverse transcriptase inhibitors
Chiral HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are of great interest since one enantiomer is often more potent than the corresponding counterpart against the HIV-1 wild type (WT) and the HIV-1 drug resistant mutant strains. This review exemplifies the various studies made to investigate the effect of chirality on the antiretroviral activity of top HIV-1 NNRTI compounds, such as nevirapine (NVP), efavirenz (EFV), alkynyl- and alkenylquinazolinone DuPont compounds (DPC), diarylpyrimidine (DAPY), dihydroalkyloxybenzyloxopyrimidine (DABO), phenethylthiazolylthiourea (PETT), indolylarylsulfone (IAS), arylphosphoindole (API) and trifluoromethylated indole (TFMI) The chiral separation, the enantiosynthesis, along with the biological properties of these HIV-1 NNRTIs, are discussed
Complete homochirality induced by the nonlinear autocatalysis and recycling
A nonlinear autocatalysis of a chiral substance is shown to achieve
homochirality in a closed system, if the back-reaction is included. Asymmetry
in the concentration of two enantiomers or the enantiometric excess increases
due to the nonlinear autocatalysis. Furthermore, when the back-reaction is
taken into account, the reactant supplied by the decomposition of the
enantiomers is recycled to produce more and more the dominant one, and
eventually the homochirality is established.Comment: 4 pages, 2 figure
- …