22,016 research outputs found

    Refraction corrections for surveying

    Get PDF
    Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables

    A low profile radiating element with nearly hemispheric coverage for satellite communications on-the-move hybrid array antenna

    Get PDF
    A novel design solution of a dual-linearly polarised Ku-band low-profile radiating element for low elevation angle coverage (down to 10° above horizon) is presented. Such an element is suitable for full-duplex Satellite Communications On-The-Move (SCOTM) hybrid scanned phased array antenna applications. Standard designed radiating elements for array applications with low profile physical structure suffer poor low elevation angle coverage as the element pattern reduces by sine of the elevation angle. The element design demonstrated in this paper features unique louvered array element geometry incorporating a spatial “ray bending” lens facilitates the shaping of the element pattern to increase gain at low elevation angles. Preliminary modelling results using ray tracing analysis shows that the desired low angle coverage can be achieved. Currently in progress full 3D electromagnetic simulations which include the interaction between the basic radiator and the spatial lens indicates that using an ideal tilted element with novel louvered reflector in addition with proposed lens, low angular coverage can potentially be realised in a low profile structure

    Spectral characteristics of earth-space paths at 2 and 30 FHz

    Get PDF
    Spectral characteristics of 2 and 30 GHz signals received from the Applications Technology Satellite-6 (ATS-6) are analyzed in detail at elevation angles ranging from 0 deg to 44 deg. The spectra of the received signals are characterized by slopes and break frequencies. Statistics of these parameters are presented as probability density functions. Dependence of the spectral characteristics on elevation angle is investigated. The 2 and 30 GHz spectral shapes are contrasted through the use of scatter diagrams. The results are compared with those predicted from turbulence theory. The average spectral slopes are in close agreement with theory, although the departure from the average value at any given elevation angle is quite large

    Low elevation angle KU-band satellite measurements at Austin, Texas

    Get PDF
    At low elevation angles, the propagation of satellite signals is affected by precipitation as well as by inhomogeneties of the refractive index. Whereas precipitation causes fades for relatively small percentages of time, the refractive index variability causes scintillations which can be observed for most of the time. An experiment is now under way in Austin, Texas, in which the right hand circularly polarized 12 GHz beacon of INTELSAT-V/F10 is observed at a 5.8 deg elevation angle, along with the radiometric sky temperature, rainfall rate, humidity, pressure, temperature, and wind speed and direction. The objective of these measurements is to accumulate a database over a period of 2 years and to analyze the probabilities and dynamical behavior of the signal variations in relation to the meteorological parameters. The hardware and software used for the data acquisition and analysis is described and the results from the first year of measurements are presented

    Energization pf polar-cusp electrons at the noon meridian

    Get PDF
    Observations gained with an electrostatic analyzer on board the low altitude, polar orbiting Aeriel 4 satellite demonstrate that the directional, differential spectra of polar-cusp electron intensities are regulated by the sign of the interplanetary magnetic field (IMF) elevation angle. In the energy range 200 is approximately less than E is approximately less than 700 eV, spectra of polar cusp electron intensities were not observed to respond to changes in the sign of the IMF elevation angle. At greater densities, spectra were found to be significantly harder when the IMF angle of elevation was greater than 0 deg, with a factor of approximately 10 typical for 2-keV electron intensities. These enhanced intensities appear to be localized within approximately a one hour sector of magnetic local time centered on the noon meridian

    Calculating Relative Air Mass

    Get PDF
    The purpose of this activity is to introduce students to the concept of relative air mass and demonstrate how solar elevation angle affects the intensity of sunlight that reaches an observer on the ground. Students work in teams to calculate air mass using simple geometry. Teacher background materials are included. Educational levels: Middle school, High school

    First results of a GNSS-R experiment from a stratospheric balloon over boreal forests

    Get PDF
    The empirical results of a global navigation satellite systems reflectometry (GNSS-R) experiment onboard the Balloon EXperiments for University Students (BEXUS) 17 stratospheric balloon performed north of Sweden over boreal forests show that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time T-c = 20 ms. This experimental evidence shows a strong coherent component in the forward scattered signal, as compared with the incoherent component, that allows to be tracked. The bistatic coherent reflectivity is also evaluated as a function of the elevation angle, showing a decrease of similar to 6 dB when the elevation angle increases from 35. to 70 degrees. The received power presents a clearly multimodal behavior, which also suggests that the coherent scattering component may be taking place in different forest elements, i.e., soil, canopy, and through multiple reflections canopy-soil and soil-trunk. This experiment has provided the first GNSS-R data set over boreal forests. The evaluation of these results can be useful for the feasibility study of this technique to perform biomass monitoring that is a key factor to analyze the carbon cycle.Peer ReviewedPostprint (author's final draft

    New optical and radio frequency angular tropospheric refraction models for deep space applications

    Get PDF
    The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included

    Angular velocity and elevation angle: the proposed human model scalable tracking model using linear regression

    Get PDF
    A scalable tracking human model was proposed for recognizing human jogging and walking activities. The model aims to detect and track a particular subject by using wearable sensor. Data collected are in accelerometer readings in three axes and gyroscope readings in three axes. The development of proposed human model is based on the moderating effects on human movements. Two moderators were proposed as the moderating factors of human motion and they are angular velocity and elevation angle. Linear regression is used to investigate the relationship among inputs, moderators and outputs of the model. The result of this study showed that the angular velocity and elevation angle moderators are affecting the relation of research output. Acceleration in x-axis (Ax) and angular velocity in y-axis (Gy) are the two main components in directing a motion. Classification between jogging and walking motions was done by measuring the magnitude of angular velocity and elevation angle. Jogging motion was classified and identified with larger angular velocity and elevation angle. The two proposed hypotheses were supported and proved by research output. The result is expected to be beneficial and able to assist researcher in investigating human motions
    • …
    corecore