Refrection Corrections for Surveying

Mission Planning and Analysis Division

August 1979

N/SA

Natıonal Aeronautics and Space Administration

SHUTTLE PROGRAM

REFRACTION CORRECTIONS FOR SURVEYING

By William M. Lear
TRW
JSC Task Monitor: Paul R. Pixley FM 8
Mathematical Physics Branch

Approved: $\{\mu$ Scon
Emil R. Schiesser, Chief
Mathematical Physics Branch

Approved:

Mission Planning and Analysis Division
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas
August 1979
Section Page
1.0 INTRODUCTION 1
2.0 THE SPHERICAL FORM OF SNELL'S LAW 2
3.0 THE RAY PATH EQUATIONS 5
4.0 INTEGRATING THE EQUATIONS 10
5.0 EXAMPLES 11
6.0 REFERENCES 15
:ir. . ater si. NOT FLLMED
$\because 3$ acr VIii FLMED

TABLES

Table Page
I SHORT. AND MEDIUM-RANGE REFRACTION CORRECTIONS 13
II LONG-RANGE REFRACTION CORRECTIONS 14

FIGURES

Figure Page
1 Refraction effects 1
2 Snell's law 2
3 Ray path across spherical surfaces 3
4 Ray path geometry 5
5 Differential geometry 7

1.0 INTRODUCTION

Optical measurementa of range and elevation angle are distorted by the Earth's atmosphere as shown in figure 1.

Figure 1.- Refraction effects.
For long ranges, the measured elevation angle E_{M} may deviate from the true elevation angle E by several milliradians, and measured range ρ_{M} may differ from true range ρ by several meters. Even short-range measurements are affected by refraction, and the effects are cumulative.

Intuition may lead one to think that refraction effects are minor when the elevation angle is near zero. Exactly the opposite is true. EM-E increases with a decreasing elevation angie, and the ray path becomes more curved. Also to be noted is that a laser ranging device can not be compensated to give a true range measurement by using the speed of light in the atmosphere, at the instrumenc. This will not include the effects of the ray path bending and the passage through higher or lower layers of atmosphere, where the speed of light differs from that at the instrumer ${ }^{+}$. The equations in this report assume that measured range is obtained by using the speed of light in a vacuum (index of refraction $n=1$).

The work presented in this report is a spinoff of the Space Shuttle Program. The high precision refraction correction equations in this report are being used to evaluate approximate refraction correction equations developed at the NASA Johnson Space Center. It was determined that the equations in this report were ideally suited for surveying since their inputs are optically measured range and optically measured elevation angle. The outputs are true straight-line range and true geometric elevation angle. The "short" distances used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programable pocket calculator.

2.0 THE SPHERICAL FORM OF SNELL'S LAW

Let n be the index of refraction. A light ray traveling from one media (n_{i}) to arother $\left(n_{i+1}\right)$ is bent according to Snell's law (fig. 2).

$$
n_{i+1} \sin \phi_{i+1}=n_{i} \sin \phi_{i}
$$

Figure 2.- Snell's law.
Figure 3 shows how Snell's law can be applicable to concentric spherical surfaces.

Figure 3.- Ray path across spherical surfaces.
From the $A B C$ triangle in figure 3 and from the law of sines,

$$
\frac{R_{i}}{\sin \psi}=\frac{R_{i+1}}{\sin \left(180-\phi_{i}\right)}=\frac{R_{i+1}}{\sin \phi_{i}}
$$

or

$$
K_{i+1} \sin \psi=R_{i} \sin \varphi_{i}
$$

But firom Snell's law of refraction,

$$
\sin \psi=\frac{n_{i+1}}{n_{i}} \sin \phi_{i+1}
$$

Thus,

$$
R_{i+1} \frac{n_{i+1}}{n_{i}} \sin \phi_{i+1}=R_{i} \sin \phi_{i}
$$

or

$$
n_{i+1} R_{i+1} \sin \phi_{i+1}=n_{i} R_{i} \sin \phi_{i}
$$

In the next layer, it is easily seen that

$$
n_{i+2} R_{i+2} \sin \phi_{i+2}=n_{i} R_{i} \sin \phi_{i}
$$

or, in general,

$$
n R \sin \phi=n_{i} R_{i} \sin \phi_{i}
$$

Elevation angle E_{M} is defined by

$$
E_{M}=90-\phi
$$

As a result, the spherical form of Snell's law is developed:

The elevation angle E_{M} at radius R is a function only of n at R and the initial conditions: n_{i}, R_{i}, and $E_{M i}$. That is, E_{M} is independent of the shape of the ray path (any crazy curve) from R_{1} to R.

3.0 THE RAY PATH EQUATIONS

Figure 4 shows the ray path geometry from the initial altitude h_{i} to the final altitude h_{f}.

Figure 4.- Ray path geomerry.

The following parameters are defined:
$R_{0}=r e f e r e n c e ~ r a d i u s ~ o f ~ E a r t h ~=6378165$ meters; value not critical
$R=R_{0}+h$
$\mathrm{h}=$ altitude above R_{0}
$h_{i}=$ initial value of h
$h_{f}=$ final value of h
$\theta=$ central angie
$\theta_{i}=$ zero
$\theta_{\mathrm{f}}=$ value at target
$E_{M}=$ elevation angle of ray path
$E_{M f}=$ value of E_{M} at target, final value
$E_{M i}=$ initial value of E_{M} as measured by equipment
ds = differential path length
$\rho=$ true, straight-line, geometric range
$E=$ true, geometric elevation angle
$c=$ speed of light in a vacuum
$\mathbf{n}=$ index of refraction at h, equal to $c /($ speed of light at h)
$n_{0}=$ value of n at R_{0}
$\rho_{M}=$ measured range

$$
\begin{equation*}
\rho_{M}=\int n d s \tag{2}
\end{equation*}
$$

The value $N=n-i$ is the modulus of refraction. An exponential atmosphere is assumed. That is,

$$
\begin{equation*}
N=N_{0} \exp \left(-h / H_{S}\right) \tag{3}
\end{equation*}
$$

The symbol H_{S} is defined as atmospheric scale height.
Values of N_{0} and H_{S} are supplied by meteorologists. However, the following empirical rejationship may be used for H_{S} (ref. 1):

This value of H_{S} is used at Johnson Space Center for processing radar tracking data. However, it may not be the best for opt:cal survey data.

Figure 5(a) shows the differential path lenath element is and its two components. Figure 5(b) shows the photon velocity along ds and its two components.

(a)
(b)

Figure 5.- Differential geometry.
Figure 5 shows that

$$
\begin{align*}
& \frac{d s}{d t}=\frac{c}{n} \tag{5}\\
& \frac{d h}{d t}=\frac{c}{n} \sin E_{M} \tag{6}\\
& \frac{d \theta}{d t}=\frac{1}{R} \frac{c}{n} \cos E_{M} \tag{7}
\end{align*}
$$

where, from equation (3), n is giver. as a function of h by

$$
\begin{equation*}
n=1+N=1+N_{0} \exp \left(-h / H_{S}\right) \tag{8}
\end{equation*}
$$

Note from equation (2) that

$$
d \rho_{M}=n d s
$$

And, using equation (5)

$$
\begin{equation*}
\frac{d o_{M}}{d t}=c \tag{9}
\end{equation*}
$$

As - Tresision for E_{M} is now required. Equation (1), the spherical form of Snell's law of refraction, could be used; however, it is fraught with numerical problems. For example, if $E_{M i}=0$, then h (eq. (6)) will remain at its initial vilue, h_{i}. It has been determined that it is more accurate to develop a differer.ial equation for E_{M} and integrate it. In equation (1),

$$
\mathrm{nR} \cos \mathrm{E}_{\mathrm{M}}=\text { constant }
$$

Differentiating with respect to time gives

$$
\dot{n} R \cos F \quad \dot{n} \dot{h} \cos E_{M}-n P \dot{E}_{M} \sin E_{M}=0
$$

But, from equaticins (8) and (3)

$$
\dot{n}=-{ }^{N_{0}} \dot{r}_{e}-\cdots / H_{S}=-\frac{N}{H_{S}} \dot{h}
$$

Thus,

$$
-R \frac{N}{H_{S}} \dot{h} \cos E_{M}+n \dot{h} \cos E_{M}-n R \dot{E}_{M} \sin E_{M}=0
$$

Using equation (6) for \dot{h}

$$
-R \frac{N}{H_{S}} \frac{c}{n} \sin E_{M} \cos E_{M}+c \sin E_{M} \cos E_{M}-n R \dot{E}_{M} \sin E_{M}=0
$$

And the equation for \dot{E}_{M} is

$$
\begin{equation*}
\frac{d E_{M}}{d t}=\left(\frac{1}{R}-\frac{N}{n H_{S}}\right) \frac{c}{n} \cos E_{M} \tag{10}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
a=c t \tag{11}
\end{equation*}
$$

Then $d a=c d t$ and the resulting equations are summarized as follows.

The initial conditions are

$$
\begin{aligned}
& a=0 \\
& h=h_{1} \\
& \theta=\theta_{i}=0 \\
& E_{M}=E_{M 1}
\end{aligned}
$$

$$
\begin{align*}
& R=R_{0}+h \tag{16}\\
& N=N_{0} \exp \left(-h / H_{S}\right) \tag{17}\\
& n=N+1 \tag{18}
\end{align*}
$$

The equations are integrated from $a=0$ to $a=$ measured range. All that remains is to obtain the expressions for ρ and E. It can be seen in figure 4 that

$$
\begin{aligned}
& R_{i}=R_{0}+h_{i} \\
& R_{f}=R_{0}+h_{f} \\
& T_{1}=R_{f} \cos \theta_{f}-R_{i} \\
& T_{2}=R_{f} \sin \theta_{f}
\end{aligned}
$$

4.0 INTEGRATING TAE EQUATIONS

A fourth order Runge-Kutta-Gill integrator has been found to be very suitable for most purposes. Oiner integrators may be found in reference 2. The Runge-Kutta-Gill integrator allows a maximum integration step size of about 10000 meters for even the most precise surveying work.

Let the state vector \underline{x} be defined by

$$
\underline{x}=\left[\begin{array}{l}
n \tag{21}\\
\theta \\
E_{M}
\end{array}\right]
$$

Let

$$
\underline{\underline{f}}(\underline{x})=\left[\begin{array}{l}
\mathrm{dh} / \mathrm{da} \tag{22}\\
d \theta / \mathrm{da} \\
d E_{M} / \mathrm{da}
\end{array}\right]
$$

Then the fourth order Runge-Kutta integrator equations (ref. 2) are:

$$
\begin{aligned}
& \underline{x}_{n}=\underline{x} \\
& \rho_{M}=\rho_{M}+\Delta a \\
& \underline{k}_{1}=\Delta a \underline{f}(\underline{x}) \\
& \underline{x}=\underline{x}_{n}+a_{1} \underline{k_{1}} \\
& \underline{k_{2}}=\Delta a \underline{f}(\underline{x}) \\
& \underline{x}=x_{n}+b_{1} \underline{k_{1}}+b_{2} \underline{k_{2}} \\
& \underline{k_{3}}=\Delta a \underline{f}(\underline{x}) \\
& \underline{x}=\underline{x}_{n}+c_{1} \underline{k}_{1}+c_{2} \underline{k}_{2}+c_{3} \underline{k}_{3} \\
& \underline{k_{4}}=\Delta a \underline{f}(x) \\
& \underline{x}=\underline{x}_{n}+d_{1} \underline{k}_{1}+d_{2} \underline{k}_{2}+d_{3} \underline{k}_{3}+d_{4} \underline{k_{4}}
\end{aligned}
$$

The Runge-Kutta-Gill consth ats (ref. 2) are:

$$
\begin{array}{lll}
a_{1}=1 / 2 & b_{1}=(\sqrt{2}-1) / 2 & b_{2}=(2-\sqrt{2}) / 2 \\
c_{1}=0 & c_{2}=-\sqrt{2} / 2 & c_{3}=(2+\sqrt{2}) / 2 \\
d_{1}=1 / 6 & d_{2}=(2-\sqrt{2}) / 6 & d_{3}=(2+\sqrt{2}) / 6 \quad d_{4}=1 / 6
\end{array}
$$

5.0 EXAMPLES

Tables I and II show examples of refraction corrections for

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{O}}=0.000395 \\
& \mathrm{H}_{S}=5446 \text { meters }
\end{aligned}
$$

$h_{i}=0$ meters

$E_{M i}=-0.239$ degrees

In tables I and II, $\Delta \rho=\rho_{M}-\rho$ meters and $\Delta E=E_{M i}-E$ milliradians.

TABLE I.- SHORT- AND MEDIUM-RANGE REFRACTION CORRECTIONS

| $\rho_{M, m}$ | $\Delta \rho, m$ | $\Delta E, m \mathrm{mad}$ | $\rho M, \mathrm{~m}$ | $\Delta \rho, \mathrm{~m}$ | $\Delta E, \mathrm{mrad}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.0395 | 0.00357 | 1000 | 0.3950 | 0.03624 |
| 200 | .0790 | .00721 | $\ddots 000$ | .7903 | .07250 |
| 300 | .1185 | .01084 | 3000 | 1.1859 | .10879 |
| 400 | .1580 | .01448 | 4000 | 1.5817 | .14509 |
| 500 | .1975 | .01810 | 5000 | 1.9779 | .18141 |
| 600 | .2370 | .02173 | , 000 | 2.3743 | .21774 |
| 700 | .2765 | .02536 | .000 | 2.7711 | .25409 |
| 800 | .3160 | .02899 | 5000 | 3.1680 | .29046 |
| 900 | .3555 | .03261 | $\subseteq 000$ | 3.5653 | .32684 |
| 1000 | .3950 | .03624 | 10000 | 3.9628 | .36324 |

TABLE II.- LONG-RANGE REFRACTION CORRECTIONS

$\rho_{M}, \mathrm{~km}$	h_{f}, m	$E_{\text {Mf }}$, deg	$40, \mathrm{~m}$	ΔE, mrad
10	-37.5	-0.1909	3.9628	0.36324
20	-66.6	-. 1430	7.9512	.72806
30	-87.4	. 0953	11.9606	1.09418
40	-99.9	-. 0478	15.9863	1.46133
50	-104.1	-. 0003	20.0236	1.82923
60	-100.0	. 0472	24.0678	2.19759
70	-87.6	. 0947	28.1141	2.56615
80	-66.9	. 1424	32.1577	2.93461
90	-37.9	. 1903	36.1938	3.30271
100	-0.5	. 2384	40.2176	3.67015

6.0 REFERENCES

1. Bear., B. R.; Trayer, B. D.; and Cahoon, B. A.: Methods of Predicting the Atmospheric Bending of Radio Waves. National Bureau of Standards Report 6056, May 18, 1959.
2. Lear, William M.: Accuracy and Speed of 38 Self-Starting Integrators. JSC IN 78-FM-39, June 1978.
