943,374 research outputs found

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Elastic strips

    Full text link
    Motivated by the problem of finding an explicit description of a developable narrow Moebius strip of minimal bending energy, which was first formulated by M. Sadowsky in 1930, we will develop the theory of elastic strips. Recently E.L. Starostin and G.H.M. van der Heijden found a numerical description for an elastic Moebius strip, but did not give an integrable solution. We derive two conservation laws, which describe the equilibrium equations of elastic strips. In applying these laws we find two new classes of integrable elastic strips which correspond to spherical elastic curves. We establish a connection between Hopf tori and force--free strips, which are defined by one of the integrable strips, we have found. We introduce the P--functional and relate it to elastic strips.Comment: 21 pages, 2 figure

    The Effect of Thermal Fluctuations on Schulman Area Elasticity

    Full text link
    We study the elastic properties of a two-dimensional fluctuating surface whose area density is allowed to deviate from its optimal (Schulman) value. The behavior of such a surface is determined by an interplay between the area-dependent elastic energy, the curvature elasticity, and the entropy. We identify three different elastic regimes depending on the ratio Ap/AsA_p/A_s between the projected (frame) and the saturated areas. We show that thermal fluctuations modify the elastic energy of stretched surfaces (Ap/As>1A_p/A_s> 1), and dominate the elastic energy of compressed surfaces (Ap/As<1A_p/A_s< 1). When Ap∼AsA_p\sim A_s the elastic energy is not much affected by the fluctuations; the frame area at which the surface tension vanishes becomes smaller than AsA_s and the area elasticity modulus increases.Comment: 12 pages, to appear in Euro. Phys. J.

    Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators

    Get PDF
    This paper addresses the realization of spatial elastic behavior with a parallel or a serial manipulator. Necessary and sufficient conditions for a manipulator (either parallel or serial) to realize a specific elastic behavior are presented and interpreted in terms of the manipulator geometry. These conditions completely decouple the requirements on component elastic properties from the requirements on mechanism kinematics. New construction-based synthesis procedures for spatial elastic behaviors are developed. With these synthesis procedures, one can select each elastic component of a parallel (or serial) mechanism based on the geometry of a restricted space of allowable candidates. With each elastic component selected, the space of allowable candidates is further restricted. For each stage of the selection process, the geometry of the remaining allowable space is described

    Effect of shear-coupled grain boundary motion on coherent precipitation

    Full text link
    We examine the interaction between precipitates and grain boundaries, which undergo shear-coupled motion. The elastic problem, emerging from grain boundary perturbations and an elastic mismatch strain induced by the precipitates, is analysed. The resulting free elastic energy contains interaction terms, which are derived numerically via the integration of the elastic energy density. The interaction of the shear-coupled grain boundary and the coherent precipitates leads to potential elastic energy reductions. Such a decrease of the elastic energy has implications on the grain boundary shape and also on the solubility limit near the grain boundary. By energy minimisation we are able to derive the grain boundary shape change analytically. We apply the results to the Fe-C system to predict the solubility limit change of cementite near an α\alpha-iron grain boundary.Comment: 8 page
    • …
    corecore