1,107,842 research outputs found
Small-Signal Refinement of Power System Static Load Modelling Techniques
Loads are often represented as a weighted combination of constant impedance (Z), current (I) and power (P) components, so called ZIP models, by various power systems network simulation tools. However, with the growing need to model nonlinear load types, such as LED lighting, ZIP models are increasingly rendered inadequate in fully representing the voltage dependency of power consumption traits. In this paper we propose the use of small-signal ZIP models, derived from a neural network model of appliance level consumption profiles, to enable better characterizations of voltage dependent load behavior. Direct and indirect approaches to small-signal ZIP model parameter estimation are presented, with the latter method shown to be the most robust to neural network approximation errors. The proposed methodology is demonstrated using both simulation and experimentally collected load data.</p
Dynamic power load simulator
Two independent models simulate dynamic and steady-state responses of electrical and electronic equipment under power load. One is resistance/capacitance/inductance network, and the other is variable resistance analog device. Resistance, inductance, and/or capacitance are selected by iterative process; time-domain response is compared with that of real equipment to select optimal values
Recommended from our members
Dynamic load balancing algorithm complexity
This paper presents a theoretical analysis of the asymptotic complexity inherent in a load balancing algorithm in a loosely-coupled network, where processor communication is achieved by message passing. The load balancing complexity depends on the network topology and the overhead of processor communication for each polling strategy. The best, worst, and average case analysis of the load balancing algorithms for the various polling topologies are presented. The polling strategies considered are local, global, and random polling. The complexity is presented as a function of the number of processors in the network
On dynamic loads in parallel shaft transmissions. 2: Parameter study
Solutions to the governing equations of a spur gear transmission model, developed in NASA TM-100180 (AVSCOM TM-87-C-2), are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also. it is found that the applied load and shaft inertia have little effect on the dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect on dynamic loading; the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness the higher the rotating speed required for dynamic response
Recommended from our members
Dynamic Load and Storage Integration
Modern technology combined with the desire to minimize the size and weight of a ship’s power system are leading to renewed interest in more electric or all electric ships. An important characteristic of the emerging ship power system is an increasing level of load variability, with some future pulsed loads requiring peak power in excess of the available steady– state power. This inevitably leads to the need for some additional energy storage beyond that inherent in the fuel. With the current and evolving technology, it appears that storage will be in the form of batteries, rotating machines, and capacitors. All of these are in use on ships today and all have enjoyed significant technological improvements over the last decade. Moreover all are expected to be further enhanced by today’s materials research. A key benefit of storage is that, when it can be justified for a given load, it can have additional beneficial uses such as ride-through capability to restart a gas turbine if there is an unanticipated power loss; alternatively, storage can be used to stabilize the power grid when switching large loads. Knowing when to stage gas turbine utilization versus energy storage is a key subject in this paper. The clear need for storage has raised the opportunity to design a comprehensive storage system, sometimes called an energy magazine, that can combine intermittent generation as well as any or all of the other storage technologies to provide a smaller, lighter and better performing system than would individual storage solutions for each potential application.Center for Electromechanic
Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears
A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads
A Method for the Combination of Stochastic Time Varying Load Effects
The problem of evaluating the probability that a structure becomes unsafe under a
combination of loads, over a given time period, is addressed. The loads and load effects
are modeled as either pulse (static problem) processes with random occurrence time, intensity and a specified shape or intermittent continuous (dynamic problem) processes which
are zero mean Gaussian processes superimposed 'on a pulse process. The load coincidence
method is extended to problems with both nonlinear limit states and dynamic responses,
including the case of correlated dynamic responses. The technique of linearization of a
nonlinear limit state commonly used in a time-invariant problem is investigated for timevarying
combination problems, with emphasis on selecting the linearization point. Results
are compared with other methods, namely the method based on upcrossing rate, simpler
combination rules such as Square Root of Sum of Squares and Turkstra's rule. Correlated
effects among dynamic loads are examined to see how results differ from correlated static
loads and to demonstrate which types of load dependencies are most important, i.e., affect'
the exceedance probabilities the most.
Application of the load coincidence method to code development is briefly discussed.National Science Foundation Grants CME 79-18053 and CEE 82-0759
J2EE application for clustered servers : focus on balancing workloads among clustered servers : a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Science in Computer Science at Massey University, Albany, New Zealand
J2EE has become a de facto platform for developing enterprise applications not only by its standard based methodology but also by reducing the cost and complexity of developing multi-tier enterprise applications. J2EE based application servers keep business logic separate from the front-end applications (client-side) and back-end database servers. The standardized components and containers simplify J2EE application design. The containers automatically manage the fundamental system level services for its components, which enable the components design to focus on the business requirement and business logic. This study applies the latest J2EE technologies to configure an online benchmark enterprise application - MG Project. The application focuses on three types of components design including Servlet, entity bean and session bean. Servlets run on the web server Tomcat, EJB components, session beans and entity beans run on the application server JBoss and the database runs on the database server Postgre SQL. This benchmark application is used for testing the performance of clustered JBoss due to various load-balancing policies applied at the EJB level. This research also focuses on studying the various load-balancing policies effect on the performance of clustered JBoss. As well as the four built-in load-balancing policies i.e. First Available, First Available Identical All Proxies, Random Robin and Round Robin, the study also extend the JBoss Load balance Policy interface to design two dynamic load-balancing policies. They are dynamic and dynamic weight-based load-balancing policies. The purpose of dynamic load-balancing policies design is to ensure minimal response time and obtain better performance by dispatching incoming requests to the appropriate server. However, a more accurate policy usually means more communications and calculations, which give an extra burden to a heavily loaded application server that can lead to drops in the performance
Thermal elastohydrodynamic lubrication of spur gears
An analysis and computer program called TELSGE were developed to predict the variations of dynamic load, surface temperature, and lubricant film thickness along the contacting path during the engagement of a pair of involute spur gears. The analysis of dynamic load includes the effect of gear inertia, the effect of load sharing of adjacent teeth, and the effect of variable tooth stiffness which are obtained by a finite-element method. Results obtained from TELSGE for the dynamic load distributions along the contacting path for various speeds of a pair of test gears show patterns similar to that observed experimentally. Effects of damping ratio, contact ratio, tip relief, and tooth error on the dynamic load were examined. In addition, two dimensionless charts are included for predicting the maximum equilibrium surface temperature, which can be used to estimate directly the lubricant film thickness based on well established EHD analysis
- …
