2 research outputs found

    Large-scale molecular phylogeny of Cryptorhynchinae (Coleoptera, Curculionidae) from multiple genes suggests American origin and later Australian radiation

    No full text
    The monophyly of the highly diverse weevil subfamily Cryptorhynchinae is tested with a dataset of 203 taxa representing 159 genera of Curculionoidea, 105 of them Cryptorhynchinae s.l. We construct a phylogeny based on an alignment of 5523 bp, consisting of fragments from two mitochondrial genes (two fragments of COI, 16S) and seven nuclear genes (ArgK, CAD, EF1α, enolase, H4, 18S, 28S). Analyses of maximum likelihood and Bayes inference recovered largely congruent results. Groups with different morphology of the rostral furrow (e.g. Aedemonini, Camptorhinini, Cryptorhynchini, Ithyporini) are not closely related to each other. However, most taxa with a mesosternal receptacle are monophyletic and here defined as Cryptorhynchinae s.s., comprising Cryptorhynchini, Gasterocercini, Torneumatini and Psepholacini, but also Arachnopodini and Idopelma Faust. The genus Phyrdenus LeConte is excluded from Cryptorhynchinae and transferred to Conotrachelini of Molytinae. Thus defined, the group still comprises several thousand species with centres of its diversity in South America and Australia. The early lineages we find in America and the Palearctic, while the extremely diverse faunas of Australia and neighbouring islands mainly belong to a more recent, species-rich radiation. This also includes a clade comprising the majority of litter-inhabiting species of New Zealand and the genus Miocalles Pascoe. Flightlessness was attained repeatedly and resulted in convergent evolution of a similar habitus in different zoogeographic regions, mainly exhibited by the polyphyletic genus Acalles Schoenherr.This work was funded by the Deutsche Forschungsgemenisnchaft, DFG (RI 1817/1-1, 3-1, 3-3)Peer Reviewe
    corecore