3 research outputs found

    Critical behavior of 3D Z(N) lattice gauge theories at zero temperature

    Get PDF
    Three-dimensional Z(N)Z(N) lattice gauge theories at zero temperature are studied for various values of NN. Using a modified phenomenological renormalization group, we explore the critical behavior of the generalized Z(N)Z(N) model for N=2,3,4,5,6,8N=2,3,4,5,6,8. Numerical computations are used to simulate vector models for N=2,3,4,5,6,8,13,20N=2,3,4,5,6,8,13,20 for lattices with linear extension up to L=96L=96. We locate the critical points of phase transitions and establish their scaling with NN. The values of the critical indices indicate that the models with N>4N>4 belong to the universality class of the three-dimensional XYXY model. However, the exponent α\alpha derived from the heat capacity is consistent with the Ising universality class. We discuss a possible resolution of this puzzle. We also demonstrate the existence of a rotationally symmetric region within the ordered phase for all N5N\geq 5 at least in the finite volume.Comment: 25 pages, 4 figures, 8 table
    corecore