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Abstract

Three-dimensional Z(N) lattice gauge theories at zero temperature are studied for various values of N .
Using a modified phenomenological renormalization group, we explore the critical behavior of the gen-
eralized Z(N) model for N = 2,3,4,5,6,8. Numerical computations are used to simulate vector models
for N = 2,3,4,5,6,8,13,20 for lattices with linear extension up to L = 96. We locate the critical points
of phase transitions and establish their scaling with N . The values of the critical indices indicate that the
models with N > 4 belong to the universality class of the three-dimensional XY model. However, the ex-
ponent α derived from the heat capacity is consistent with the Ising universality class. We discuss a possible
resolution of this puzzle.
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1. Introduction

Models possessing global and/or local discrete Z(N) symmetry play an important role
in many branches of physics ranging from the solid state physics to the description of the
universality features of the deconfining transition in SU(N) gauge theories. In this paper we
are interested in the Z(N) lattice gauge theory (LGT) at zero temperature. Assigning the gauge
fields sn(x) = 0,1, . . . ,N − 1 to the links of a simple hypercubic lattice, the most general action
of the isotropic Z(N) LGT can be written as

Sgauge = 1

2

∑
x

∑
n<m

N−1∑
k=1

βk exp

(
2πik

N

(
sn(x) + sm(x + en) − sn(x + em) − sm(x)

))
, (1)

where en, n = 1,2,3, denotes the unit vector in the n-th direction. Similarly, the most general
action of the Z(N) spin model is given by

Sspin = 1

2

∑
x

∑
n

N−1∑
k=1

βk exp

(
2πik

N

(
s(x) − s(x + en)

))
. (2)

In both cases we used the convention

βk = β−k = βk+N > 0. (3)

The standard spin and gauge Potts models correspond to the choice when all βk are equal. Then,
the sum over k reduces to a delta-function on the Z(N) group. The conventional vector spin
and gauge models correspond to βk = 0 for all k �= 1,N − 1. For N = 2,3 the Potts and vector
models are equivalent.

Two-dimensional (2D) standard and vector Z(N) LGTs are exactly solvable both in the finite
volume and in the thermodynamic limit. They exhibit no phase transition at any finite value of
the coupling constant β . In particular, the rectangular R × T Wilson loop in the representation k

obeys the area law〈
Wk(S)

〉 = exp
(−σk(N)RT

)
,

thus implying a permanent confinement of static charges. For example, the string tension of the
vector gauge model in the thermodynamic limit reads

σk(N) = ln

[
C0(N,β)

Ck(N,β)

]
> 0, Ck(N,β) =

∞∑
r=−∞

INr+k(β).

Here, Ik(x) is the modified Bessel function.
No exact solution has been found for any Z(N) model in 3D, where the phase structure be-

comes highly non-trivial. While the phase structure of the general model defined by (1) remains
unknown, it is well established that Potts gauge models and vector gauge models with only β1
non-vanishing have one phase transition from a confining phase to a phase with vanishing string
tension [1–3]. Via duality, Z(N) gauge models can be exactly related to 3D Z(N) spin models.
In particular, a Potts gauge theory is mapped to a Potts spin model, and such a relation allows
to establish the order of the phase transition. Hence, Potts LGTs with N = 2 have second order
phase transition, while for N � 3 one finds a first order phase transition. Since Z(2) LGT is
equivalent to the Ising model, its critical behavior is well known (see Refs. [4] and references
therein). Generally, the Z(N) global symmetry of the finite-temperature 4D SU(N) gauge the-
ory motivated thorough investigations, both analytical and numerical, of the 3D spin models,
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especially for N = 2,3 [5,6] (for more recent studies, see [7] and references therein). The 3D
Potts models for N > 3 have been simulated in [8] and studied by means of the high-temperature
expansion in [9].

Surprisingly, much less is known about the critical behavior of Z(N) vector LGTs when
N > 4. They have been studied numerically in [10] up to N = 20 on symmetric lattices with
size L ∈ [4–16]. It was confirmed that zero-temperature models possess a single phase transition
which disappears in the limit N → ∞. A scaling formula proposed in [10] shows that the critical
coupling diverges like N2 for large N . Thus, the U(1) LGT has a single confined phase in
agreement with theoretical results [11]. We are not aware, however, of any detailed study of
the critical behavior of the vector gauge models with N � 4 in the vicinity of this single phase
transition. Slightly more is known about the critical properties of Z(N) vector spin models. In
particular, it has been suggested that all vector spin models exhibit a single second order phase
transition [12]. An especially detailed study was performed on the Z(6) model, because the
Z(6) global symmetry appears as an effective symmetry of the Z(3) antiferromagnetic Potts
model [13,14]. The computed critical indices suggest that the Z(6) vector spin model belongs
to the universality class of the 3D XY model. An interesting feature of the Z(6) model and,
possibly, of all vector spin models with N > 4, is the appearance of an intermediate rotationally
symmetric region below the critical temperature of the second order phase transition. The mass
gap was however found to be rather small, but non-vanishing in this region [13]. Combined with
a renormalization group (RG) study, the analysis concluded that this intermediate region presents
a crossover to a low-temperature massive phase, where the discreteness of Z(6) plays an essential
role [14].

The main goal of the present work is to fill the gap in our knowledge about the critical
behavior of the 3D Z(N) LGTs. Another motivation comes from our recent studies of the de-
confinement transition in the Z(N) vector LGT for N > 4 at finite temperatures [15–17]. The
major findings of these papers was the demonstration of two phase transitions of the Berezinskii–
Kosterlitz–Thouless type and the existence of an intermediate massless phase. The critical indices
at these transitions have been found to coincide with the indices of the 2D vector spin models. An
interesting question then arises regarding the construction of the continuum limit of the finite-
temperature models in the vicinity of the critical points. For this to accomplish it might be useful,
and even necessary, to know the scaling of quantities such as string tension, correlation length,
etc. near the critical points of the corresponding zero temperature models.

In this work we are going to:

• Perform an analytical study of the general 3D Z(N) LGT for various N using a “phenomeno-
logical” RG;

• Locate critical points of the vector gauge models via Monte Carlo simulations of the dual of
the Z(N) LGT and determine their scaling with N ;

• Compute some critical indices and establish the universality class of the models;
• Illustrate the existence of the rotationally symmetric region within an ordered phase for all

N � 5 at least in the finite volume.

This paper is organized as follows. In Section 2 we formulate our model and recall the exact
duality relation with a generalized 3D Z(N) spin model. Section 3 is devoted to a RG study of
the models. Within a modified version of the phenomenological RG, we explore the space of
coupling constants, find fixed points and calculate the critical index ν. In Section 4 we present
the setup of Monte Carlo simulations, define the observables used in this work and present the
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numerical results. In particular, we locate the position of critical points and compute various
critical indices at these points. As a cross-check, we also simulated Z(N = 2,3) gauge models
for which high-precision results are available. The same section deals also with the computation
of the average action and the heat capacity in the vicinity of critical points and the derivation
of the index α from a finite size scaling (FSS) analysis of the heat capacity. In Section 5 we
discuss some findings regarding the symmetric region below the critical point. All results are
finally summarized in Section 6.

2. Relation of the 3D Z(N) LGT to a generalized 3D Z(N) spin model

We work on a 3D lattice Λ = L3 with linear extension L: �x = (x1, x2, x3), where xi ∈
[0,L − 1] denote the sites of the lattice and en, n = 1,2,3, denotes the unit vector in the n-th
direction. Periodic boundary conditions (BC) on gauge fields are imposed in all directions. We
introduce conventional plaquette angles s(p) as

s(p) = sn(x) + sm(x + en) − sn(x + em) − sm(x). (4)

The 3D Z(N) LGT on an isotropic lattice can generally be defined as

Z
(
Λ; {βk};N

) =
∏
l∈Λ

(
1

N

N−1∑
s(l)=0

)∏
p

Q
(
s(p)

)
. (5)

The most general Z(N)-invariant Boltzmann weight is

Q(s) = exp

[
1

2

N−1∑
k=1

βk exp

(
2πik

N
s

)]
. (6)

The U(1) LGT is defined as the limit N → ∞ of the above expressions.
To study the phase structure of 3D Z(N) LGTs one can map the gauge model to a generalized

3D Z(N) spin model with the action given by Eq. (2). The relation between spin βs
k and gauge

β
g
k couplings can be computed exactly and reads

βs
k = 1

N

N−1∑
p=0

ln

[
Qd(p)

Qd(0)

]
cos

(
2πpk

N

)
, (7)

where the dual Boltzmann weight is defined as

Qd(s) =
N−1∑
p=0

Q(p) cos

(
2πps

N

)
. (8)

In what follows we are going to simulate the Z(N) vector LGT. In this case we use β1 = βN−1 =
β and the dual weight becomes

Qd(s) =
∞∑

r=−∞
INr+s(β). (9)

An example of the explicit relations between couplings in this case together with some further
important comments on the relations can be found in [17].

With the goal of performing RG transformations, it is somewhat more convenient to use a
different but equivalent representation for the Boltzmann weight, namely
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Q
[{tk}; s] =

N−1∑
k=0

tk exp

[
2πi

N
ks

]
. (10)

The set of coupling constants {tk} can be chosen to satisfy

t0 = 1, 0 � tk � 1, tk = t−k = tk+N.

The coupling constants tk and βk can be connected to each other via the Fourier transform on the
Z(N) group. The dual of the partition function (5) can then be presented as

Z
(
Λ; {tk};N

) =
N−1∑
jn=0

∏
x∈Λ

(
1

N

N−1∑
s(x)=0

)∏
x,n

ts(x)−s(x+en)+ηn . (11)

Here, the summations over jn, n = 1,2,3, enforce the global Bianchi constraints due to the pe-
riodic BC and ηn = jn on a set of links dual to any fixed closed surface wrapping the original
lattice in the directions perpendicular to n, otherwise ηn = 0.

3. Results of the RG study

As a first step we consider the general 3D Z(N) LGT with the Boltzmann weight (10) and
study its phase structure with the help of the phenomenological renormalization group (PH
RG) [18]. For the 3D Ising model this RG was used in [19]. As is well known, the PH RG gives
in many cases not only the qualitatively correct phase diagram of a model, but also a good quan-
titative approximation for the observables near the critical points, and this approximation can be
systematically improved. We follow the general strategy described in the original papers [18]
and only briefly outline our modifications (for a detailed account of these modifications, together
with application to other models, see [20]). As is common for this type of RG, we preserve the
mass gap during the RG steps. We proceed as follows.

1. As a starting point we always use the dual formulations, i.e. Eq. (11) in the present case.
2. As a simplest 3D strip, we take a lattice Λs = (2×2×L) with periodic BC in both transverse

directions and periodic or free BC in the longitudinal direction. Correlation functions are
computed on Λs and on a one-dimensional lattice for all representations.

3. The requirement of mass gap preservation leads to equations for the fixed points

t
(1)
j =

[
λj ({tk})
λ0({tk})

]2

, (12)

where λj ({tk}) is the eigenvalue of the transfer matrix corresponding to the correlation func-
tion in the representation j . This set of equations is treated as the recursion relations for the
renormalized coupling constants.

4. The summation over the spins lying in one plane perpendicular to the longitudinal direc-
tion introduces all possible interactions between the remaining spins. The transfer matrix is
constructed for the evolution of all independent couplings of this general interaction. This
substantially reduces the size of the matrix.

5. Combining the PH RG in the form described above with the cluster decimation approxima-
tion of Ref. [21], we can construct new partition and correlation functions on a decimated
lattice with double lattice spacing. The next iteration is performed with newly computed
constants t

(1).
j
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Table 1
3D Z(N) standard Potts gauge models: βc from the PH RG (column two) and from the Monte Carlo
simulations of Ref. [8] (column three). 3D Z(N) vector gauge models: βc from the PH RG (column four)
and from the Monte Carlo simulations of this work (column five); critical index ν from the PH RG.

N Potts model Vector model

βc βMC
c βc βMC

c ν

2 0.77706 0.761414(2) 0.77706 0.761395(4) 0.616656
3 1.17186 1.084314(8) 1.17186 1.0844(2) –
4 1.34363 1.288239(5) 1.55411 1.52276(4) 0.616657
5 1.50331 1.438361(4) 2.17896 2.17961(10) 0.692226
6 1.62881 1.557385(4) 2.99296 3.00683(7) 0.699208
8 1.81941 1.740360(6) 5.09472 5.12829(13) 0.699583

13 – – – 13.1077(3) –
20 – – – 30.6729(5) –

In the framework of this approach we have explored the phase structure of the generalized
Z(N) LGT. Only in the case of the standard Potts model we can restrict ourselves to one iteration,
since the RG steps do not generate new interactions. For the general case one should perform
many iterations to locate precisely the critical points. The critical indices are calculated in the
fixed point of the iterations where the critical points of the models of a given universality class
are flowing to. Thorough discussion of the general case is given in [20]. Here we report on the
results for the vector LGTs relevant for this paper.

In Table 1 we present the estimates of the critical points βc, both in standard Potts gauge
models and in vector gauge models, coming from the PH RG, and compare them with the results
of Monte Carlo numerical simulations. In the case of standard Potts models, these simulations
were performed in Ref. [8], while for the vector gauge models, they were carried out in this
paper. One can see that the PH RG based on the smallest possible strip and combined with the
cluster decimation approximation gives quite accurate predictions both for the critical coupling
and, as we will see later on, also for the index ν.

4. Numerical results

4.1. Setup of the Monte Carlo simulation

The model under exam in this work is described by the action given in Eqs. (5) and (6), with
couplings β1 = βN−1 ≡ β , βn = 0, n = 2, . . . ,N − 2. To study the phase transitions it turns
out to be more convenient to simulate the dual spin model, whose action is given in (2) with
the coupling constants computed according to Eq. (7). Simulations were performed by means
of a cluster algorithm on symmetric lattices L3 with periodic BC and L in the range 8–96. For
each Monte Carlo run the typical number of generated configurations was 2.5 · 106, the first
105 of them being discarded to ensure thermalization. Measurements were taken after every 10
updatings and error bars were estimated by the jackknife method combined with binning.

We considered the following observables:

• Complex magnetization ML = |ML|eiψ ,

ML =
∑
x∈Λ

exp

(
2πi

N
s(x)

)
; (13)
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• Population SL,

SL = N

N − 1

(
maxi=0,N−1 ni

L3
− 1

N

)
, (14)

where ni is number of s(x) equal to i;
• Real part of the rotated magnetization MR = |ML| cos(Nψ) and normalized rotated magne-

tization mψ = cos(Nψ);

• Susceptibilities of ML, SL and MR : χ
(M)
L , χ

(S)
L , χ

(MR)
L

χ
(·)
L = L2(〈·2〉 − 〈·〉2); (15)

• Binder cumulants U
(M)
L and B

(MR)
4 ,

U
(M)
L = 1 − 〈|ML|4〉

3〈|ML|2〉2
,

B
(MR)
4 = 〈|MR − 〈MR〉|4〉

〈|MR − 〈MR〉|2〉2
. (16)

We computed also the average action and the heat capacity in the vicinity of the critical points.

4.2. Critical couplings and their scaling with N

We obtained the critical couplings using the Binder cumulant crossing method described
in [22]. In particular, we computed by Monte Carlo simulations the Binder cumulant U

(M)
L and

its first three derivatives with respect to β for the different lattice sizes, thus allowing to build
the function U

(M)
L (β) in the region near the transition. Then, we looked for the value of β at

which the curves U
(M)
L (β) related to the different lattice sizes L “intersect”. In fact, the critical

coupling βc was estimated as the value of β at which U
(M)
L (β) exhibits the least dispersion over

lattice sizes ranging from L = 16 to L = 96.
The values of βc are quoted in the column five of Table 1. The error bars take into account

some of the systematic effects, the main one being the dependence of the estimated value of βc
on the set of lattice sizes considered in the analysis. Another, less relevant, source of systematics
is the uncertainty in the analytic dependence of U

(M)
L on β near the critical point.

In [10] the dependence of the 3D Z(N) critical gauge couplings on N was described as

βc = 1.5

1 − cos( 2π
N

)
. (17)

With our new data we checked how good is the above scaling and provided the next-order cor-
rection to it. Using different forms for the next-order corrections, we found that our data exclude
a correction of O(N0), but reveal corrections of the order 1/N2, which we take in the form
C(1 − cos( 2π

N
)). The critical coupling values for the 3D Z(N > 4) vector gauge models were

then fitted with the formula

βc = A

1 − cos( 2π
N

)
+ C

(
1 − cos

(
2π

N

))
, (18)

giving the following results: A = 1.50122(7), C = 0.0096(5), χ2/d.o.f. = 13.1 (see Fig. 1).
Despite the large χ2, probably due to the underestimation of the error bars of critical couplings,
the proposed function nicely interpolates data over a large interval of values of N .
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Fig. 1. Critical couplings of 3D Z(N) vector gauge models plotted versus N (dots) together with the fitting curve given
in (18) (solid line). The error bars on the critical couplings are smaller than symbols.

Table 2
Critical index ν of 3D Z(N) vector gauge models determined by the fit procedure described in the text for different
choices of the minimum lattice size Lmin; the χ2 given in the last column is the reduced one.

N Lmin ν χ2
ν

2 8 0.6253(5) 2.53
16 0.6280(7) 1.21
24 0.6306(8) 0.90

4 8 0.62661(11) 1.96
16 0.62793(12) 1.93
24 0.62933(12) 1.07

5 8 0.6675(5) 1.49
16 0.6698(4) 0.94
24 0.6681(8) 1.13

6 8 0.6687(12) 4.12
16 0.6739(10) 1.53
24 0.6756(17) 2.10

N Lmin ν χ2
ν

8 8 0.6678(5) 5.41
16 0.6720(4) 1.96
24 0.6748(2) 1.43

13 8 0.6670(7) 3.68
16 0.6709(9) 2.42
24 0.6723(17) 2.67

20 8 0.6689(7) 4.08
16 0.6730(4) 1.04
24 0.6739(7) 1.36

4.3. Critical indices and hyperscaling relation

The procedure to determine the critical index ν is also inspired by Ref. [22]: for each lattice
size L the known function U

(M)
L (β) is used to determine dU

(M)
L (β)/dβ; from this, the derivative

of U
(M)
L with respect to the rescaled coupling x = (β − βc)L

1/ν can be calculated,

dU
(M)
L

dx
= dU

(M)
L

dβ
L1/ν . (19)

The best estimate of ν is found by minimizing the deviation of dU
(M)
L /dx with respect to a

constant value. The minimization can be done at βc or at any other value βf ≈ βc defined as the
point where U

(M)
L on a given lattice becomes equal to some fixed value. The resulting values

for ν, summarized in Table 2, do not differ within error bars.
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Fig. 2. Heat capacity (left) and susceptibility χ
(M)
L

(right) versus β for the 3D Z(5) vector gauge model on lattices with
L = 8 (red), 16 (green), 24 (violet), 32 (blue) and 64 (orange). The vertical dashed line shows the location of the critical
point. The error bars are smaller than symbols. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The critical indices β/ν and γ /ν can be extracted from the FSS analysis of the magnetization
ML and its susceptibility χ

(M)
L , according to the following fitting functions,

ML = A1L
−β/ν

(
1 + B1L

−Δ/ν
)
,

χML
= A2L

γ/ν
(
1 + B2L

−Δ/ν
)
, (20)

which include also the first subleading corrections [23]. The critical index η will then be given
by 2 − γ /ν and the hyperscaling relation d = 2β/ν + γ /ν must be satisfied with d = 3.

In Tables 3 and 4 we summarize the results for the critical indices, when the FSS analysis is
performed at β fixed at the central value of the determination of βc. Results are given for the
cases when the subleading corrections, depending on the exponent Δ, are included in neither fit,
in both fits or only in one of them. When considered, the exponent Δ has been fixed to the value
0.53, as in the 3D XY model [22]. Varying Δ in a wide interval does not give any significant
change in the results.

In Tables 5, 6, 7 we summarize the values of the critical indices obtained by two alternative
methods: (i) performing the fit with the functions given in (20) not at βc, but at the pseudocritical
βpc which maximizes the susceptibility χ

(M)
L (column two); (ii) performing the fit at a βf defined

as the point where U
(M)
L on a given lattice becomes equal to some fixed value U

(M)
L,f ; as these

fixed values, we chose U
(M)
L,crit – our estimate for the intersection point of the U

(M)
L curves at

different lattice sizes (column three), then a slightly larger value than this (column four) and
slightly smaller value (column five) (for N > 4, U

(M)
L,f = 0.588 in column three; U

(M)
L,f = 0.60

in column four; U
(M)
L,f = 0.57 in column five); in all cases, the fit was done including data from

lattice sizes with Lmin = 24.

4.4. Heat capacity and the index α

The critical index α, determined from the ν values obtained in the previous subsection by
means of the relation α = 2−dν, gets negative values for all N � 5, meaning that the transition is
of order higher than two. In fact, these negative values are very close to that of the 3D XY model
[22]. However, the plots of the heat capacity (see Fig. 2(left)) clearly show that it diverges in the
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Table 3
Critical indices β/ν (column three) and γ /ν (column five) of 3D Z(N) vector gauge models with N = 2,4,5,6, de-

termined by the fits given in Eqs. (20) on the complex magnetization ML and its susceptibility χ
(M)
L

, respectively, for

different choices of the minimum lattice size Lmin. The χ2 of the two fits, given in columns four and six, are the reduced
one. Column seven gives the dimension d derived from the hyperscaling relation d = 2β/ν + γ /ν, while column eight
contains the values of η = 2 − γ /ν. The three sets of parameters corresponding to the same choice of Lmin refer to the
cases of subleading corrections (term with the exponent Δ in Eqs. (20)) included (i) in neither fit, (ii) only in the fit for
γ /ν, (iii) in both fits.

N Lmin β/ν χ2
β/ν γ /ν χ2

γ /ν d η

2 8 0.5065(3) 1.32 2.002(2) 26.1 3.015(3) −0.002(2)

0.5065(3) 1.32 1.9608(17) 0.73 2.974(2) 0.0392(17)

0.5074(16) 1.38 1.9608(17) 0.73 2.976(5) 0.0392(17)

16 0.5066(6) 1.50 1.9908(14) 2.91 3.004(2) 0.0092(14)

0.5066(6) 1.50 1.962(4) 0.58 2.976(5) 0.038(4)

0.515(3) 1.08 1.962(4) 0.58 2.993(11) 0.038(4)

24 0.5058(9) 0.87 1.9851(14) 0.90 2.997(3) 0.0149(14)

0.5058(9) 0.87 1.971(11) 0.82 2.982(12) 0.029(11)

0.516(7) 0.75 1.971(11) 0.82 3.00(2) 0.029(11)

4 8 0.5022(6) 7.05 2.007(3) 23.5 3.0012(4) −0.007(3)

0.5022(6) 7.05 1.954(2) 0.69 2.958(3) 0.046(2)

0.5100(19) 3.36 1.954(2) 0.69 2.974(6) 0.046(2)

16 0.5020(7) 7.46 2.002(2) 12.2 3.006(4) −0.002(2)

0.5020(7) 7.46 1.955(2) 0.70 2.959(4) 0.045(2)

0.514(2) 2.37 1.955(2) 0.70 2.982(7) 0.045(2)

24 0.5018(9) 7.47 1.998(2) 6.95 3.001(4) 0.002(2)

0.5018(9) 7.47 1.955(3) 0.76 2.959(5) 0.045(3)

0.517(2) 1.69 1.955(3) 0.76 2.989(8) 0.045(3)

5 8 0.5106(2) 3.34 1.998(3) 29.8 3.019(3) 0.002(3)

0.5106(2) 3.34 1.954(2) 0.90 2.975(2) 0.046(2)

0.5091(12) 3.16 1.954(2) 0.90 2.972(4) 0.046(2)

16 0.5113(3) 1.85 1.9857(14) 2.27 3.008(2) 0.0143(14)

0.5113(3) 1.85 1.963(6) 0.94 2.986(7) 0.037(6)

0.5157(17) 1.11 1.963(6) 0.94 2.995(9) 0.037(6)

24 0.5101(3) 0.62 1.982(2) 1.81 3.002(2) 0.018(2)

0.5101(3) 0.62 1.959(16) 1.52 2.980(17) 0.041(16)

0.512(3) 0.74 1.959(16) 1.52 2.98(2) 0.041(16)

6 8 0.5077(2) 3.36 2.007(4) 47.5 3.022(4) −0.007(4)

0.5077(2) 3.36 1.949(2) 0.98 2.964(2) 0.051(2)

0.5071(12) 3.59 1.949(2) 0.98 2.963(4) 0.051(2)

16 0.5078(2) 0.88 1.990(2) 4.63 3.006(2) 0.010(2)

0.5078(2) 0.88 1.947(7) 0.84 2.963(7) 0.053(7)

0.5121(12) 0.34 1.947(7) 0.84 2.971(9) 0.053(7)

24 0.5070(3) 0.45 1.983(2) 1.76 2.997(3) 0.017(2)

0.5070(3) 0.45 1.95(3) 1.85 2.97(3) 0.05(3)

0.510(4) 0.58 1.95(3) 1.85 2.97(4) 0.05(3)
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Table 4
Same as Table 3 for 3D Z(N) vector gauge models with N = 8,13,20.

N Lmin β/ν χ2
β/ν γ /ν χ2

γ /ν d η

8 8 0.5083(2) 4.00 2.006(3) 66.0 3.023(3) −0.006(4)

0.5083(2) 4.00 1.952(2) 1.57 2.968(2) 0.048(2)

0.5082(9) 4.28 1.952(2) 1.57 2.968(4) 0.048(2)

16 0.5085(3) 2.87 1.992(2) 10.5 3.009(2) 0.008(2)

0.5085(3) 2.87 1.947(6) 2.04 2.964(6) 0.053(6)

0.5136(13) 1.33 1.947(6) 2.04 2.974(9) 0.053(6)

24 0.5079(5) 3.52 1.983(2) 4.57 2.999(3) 0.017(2)

0.5079(5) 3.52 1.944(16) 2.86 2.959(17) 0.056(16)

0.519(3) 1.43 1.944(16) 2.86 2.98(2) 0.056(16)

13 8 0.5087(3) 8.22 2.011(3) 52.5 3.028(4) −0.011(3)

0.5087(3) 8.22 1.956(2) 1.45 2.973(3) 0.044(2)

0.5055(13) 6.28 1.956(2) 1.45 2.967(5) 0.044(2)

16 0.5097(3) 2.05 1.994(2) 6.87 3.014(2) 0.006(2)

0.5097(3) 2.05 1.949(6) 1.48 2.969(7) 0.051(6)

0.5137(17) 1.48 1.949(6) 1.48 2.977(10) 0.051(6)

24 0.5088(5) 2.12 1.985(2) 2.06 3.003(3) 0.015(2)

0.5088(5) 2.12 1.958(15) 1.61 2.976(16) 0.042(15)

0.514(4) 2.10 1.958(15) 1.61 2.99(2) 0.042(15)

20 8 0.5076(3) 9.69 2.006(3) 65.7 3.022(4) −0.006(3)

0.5076(3) 9.69 1.952(2) 1.94 2.967(2) 0.048(2)

0.5067(14) 10.0 1.952(2) 1.94 2.965(5) 0.048(2)

16 0.5080(3) 4.48 1.9905(18) 7.25 3.007(2) 0.0095(18)

0.5080(3) 4.48 1.953(5) 1.82 2.969(6) 0.047(5)

0.5148(16) 1.92 1.953(5) 1.82 2.983(9) 0.047(5)

24 0.5074(7) 5.80 1.985(2) 4.68 2.999(4) 0.015(2)

0.5074(7) 5.80 1.941(13) 2.33 2.956(15) 0.059(13)

0.523(2) 0.85 1.941(13) 2.33 2.987(18) 0.059(13)

vicinity of the critical point. Moreover, the maxima of the heat capacity and of the susceptibility
χ

(M)
L approach the critical point from different sides (see Figs. 2).

This suggests that a different value for the index ν can be found if a FSS analysis is done on
the peak values of the heat capacity, using as fitting function

C(L) = ALα/ν
(
1 + BL−Δ/ν

)
, (21)

where the possible inclusion of subleading corrections has been taken into account. After α/ν is
extracted, from the relation α = 2 − dν the value of ν can be obtained.

In Table 8 we summarize the results for ν determined in the described way, with and without
the inclusion of the subleading correction term. When considered, the exponent Δ has been fixed
to the value 0.5 [23]. Varying Δ in the interval [0.4–0.6] does not give any significant change in
the results. The error estimates given in the table do not include systematic uncertainties brought
by the localization of the maximum of the heat capacity by using analytic continuation, which
can be unreliable in regions where the heat capacity changes fast. The constant B in front of the
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Table 5
Critical indices of 3D Z(N) vector gauge models obtained from two alternative methods (see the text); the results of the
first alternative are given in column two, those of the second alternative (three variants) in columns from three to five. The
legenda for the entries in each large cell is the following: η = 2−γ /ν (first line), β/ν with its χ2 (second line), γ /ν with
its χ2 (third line) and the dimension d = 2γ /ν + β/ν (fourth line). Subleading corrections (term with the exponent Δ)
were not included in either fits.

N βpc, χ
(M)
L

max βf,U
(M)
L f = U

(M)
L crit βf,U

(M)
L f > U

(M)
L f βf,U

(M)
L f < U

(M)
L f

2 η = 0.017(2) 0.0172(13) 0.0162(19) 0.0141(15)
β/ν = 0.512(3), χ2 = 6.18 0.504(2) 1.93 0.504(2) 1.93 0.5049(12) 1.80
γ /ν = 1.983(2), χ2 = 1.53 1.9828(13) 0.55 1.9838(19) 1.48 1.9859(15) 2.02
d = 3.006(9) 2.990(5) 2.991(5) 2.996(4)

4 0.0106(18) 0.0182(18) 0.018(3) 0.016(2)
0.4983(17) 43.3 0.493(2) 36.6 0.493(2) 36.6 0.493(2) 36.6
1.9894(18) 4.28 1.9818(18) 1.09 1.982(2) 2.54 1.984(2) 2.49
2.986(5) 2.968(7) 2.967(8) 2.970(7)

5 0.0218(13) 0.0210(10) 0.0219(14) 0.0218(13)
0.5106(9) 3.56 0.5103(4) 1.66 0.5088(7) 3.61 0.5106(9) 3.56
1.9762(13) 0.76 1.9790(10) 0.76 1.9781(14) 0.75 1.9782(13) 0.76
2.999(3) 2.9996(18) 2.996(2) 2.999(3)

6 0.0227(16) 0.0179(14) 0.0182(12) 0.021(2)
0.5052(9) 6.04 0.5052(9) 6.04 0.5052(9) 6.04 0.5101(13) 3.49
1.9773(16) 1.92 1.9821(14) 1.06 1.9818(12) 1.37 1.979(2) 0.85
2.988(3) 2.992(3) 2.992(3) 2.999(4)

8 0.0213(15) 0.0176(16) 0.0172(13) 0.0222(19)
0.511(4) 180. 0.5075(6) 4.12 0.5083(8) 14.1 0.5098(4) 0.73
1.9787(15) 1.06 1.9824(16) 1.91 1.9828(13) 1.74 1.9778(19) 1.12
3.000(11) 2.997(2) 2.999(2) 2.998(2)

13 0.0199(12) 0.0168(16) 0.0146(14) 0.0149(12)
0.5078(9) 3.72 0.5075(8) 4.16 0.5092(11) 20.0 0.5063(8) 10.1
1.9801(12) 0.90 1.9832(16) 1.24 1.9854(14) 1.73 1.9851(12) 2.07
2.996(3) 2.998(3) 3.004(3) 2.998(3)

20 0.0221(18) 0.0166(13) 0.005(9) 0.0196(12)
0.5062(15) 11.8 0.5071(5) 3.43 0.5034(7) 16.1 0.5094(9) 10.7
1.9779(18) 2.35 1.9834(13) 1.26 1.995(9) 123. 1.9804(12) 2.00
2.990(4) 2.998(3) 3.002(10) 2.999(3)

subleading correction appears to be of order unity, B ∼ 0.4–0.7, and does not seem to depend
on N .

We see that while for N = 2,4 the resulting ν agrees with the value of ν in the 3D Ising
model, and the agreement improves if we include the subleading correction, for N > 4 this is not
the case. For N > 4 the difference between the ν values obtained with and without inclusion of
subleading corrections is much smaller than for N = 2,4. The most important fact is, however,
that in all cases the ν indices obtained in this way are close to ν ≈ 0.63 – the critical index for the
Ising model. The difference between ν indices obtained from the U

(M)
L cumulants and from the

heat capacity leads us to conclude that we have two kinds of singularity depending on whether
one approaches the critical coupling from above (3D XY model-like singularity) or from below
(3D Ising universality class), for N > 4.
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Table 6
Same as Table 5, with subleading corrections (term with the exponent Δ) included only in the fits for γ /ν.

N βpc, χ
(M)
L

max βf,U
(M)
L f = U

(M)
L crit βf,U

(M)
L f > U

(M)
L f βf,U

(M)
L f < U

(M)
L f

2 0.03(2) 0.032(11) 0.025(18) 0.033(10)
0.512(3) 6.18 0.504(2) 1.93 0.504(2) 1.93 0.5049(12) 1.80
1.97(2) 1.74 1.968(11) 0.49 1.975(8) 1.67 1.967(10) 1.68
3.00(3) 2.975(15) 2.98(2) 2.977(13)

4 0.041(5) 0.039(12) 0.049(14) 0.044(6)
0.4983(17) 43.3 0.493(2) 36.6 0.493(2) 36.6 0.493(2) 36.6
1.959(5) 1.15 1.961(12) 0.89 1.951(14) 1.74 1.956(6) 0.80
2.956(8) 2.947(17) 2.936(19) 2.942(11)

5 0.036(8) 0.037(5) 0.029(12) 0.036(8)
0.5106(9) 3.56 0.5103(4) 1.66 0.5088(7) 3.61 0.5106(9) 3.56
1.964(8) 0.67 1.963(5) 0.44 1.971(12) 0.80 1.964(8) 0.67
2.985(10) 2.984(5) 2.989(13) 2.985(10)

6 0.040(11) 0.038(10) 0.030(5) 0.026(16)
0.5052(9) 6.04 0.5052(9) 6.04 0.5052(9) 6.04 0.5101(13) 3.49
1.960(11) 1.68 1.962(10) 0.77 1.970(5) 0.95 1.974(16) 0.97
2.970(13) 2.972(11) 2.980(7) 2.994(19)

8 0.038(13) 0.042(10) 0.034(4) 0.048(12)
0.511(4) 180. 0.5075(6) 4.12 0.5083(8) 14.1 0.5098(4) 0.73
1.962(13) 1.00 1.958(10) 1.27 1.966(4) 0.65 1.952(12) 0.82
2.98(2) 2.973(11) 2.983(6) 2.972(13)

13 0.031(10) 0.038(9) 0.029(7) 0.038(6)
0.5078(9) 3.72 0.5075(8) 4.16 0.5092(11) 20.0 0.5063(8) 10.1
1.969(10) 0.89 1.962(9) 0.87 1.971(7) 1.37 1.962(6) 1.12
2.984(12) 2.977(11) 2.990(10) 2.975(8)

20 0.036(10) 0.036(8) 0.01(6) 0.033(4)
0.5062(15) 11.8 0.5071(5) 3.43 0.5034(7) 16.1 0.5094(9) 10.7
1.964(10) 2.10 1.964(8) 0.84 1.99(6) 134. 1.967(4) 1.00
2.976(13) 2.978(9) 3.00(6) 2.985(6)

5. Symmetric phase

Another interesting phenomenon we have encountered during our study is the appearance
of a symmetric phase just below βc for all N � 5. That such phase exists in the vector Z(6)

spin model has been known for a long time [12–14]. Here we confirm its existence for all vector
Z(N � 5) LGTs. The phase exhibits itself, e.g., in the behavior of magnetization. As an example,
we give in Fig. 3 the scatter plots of magnetization and rotated magnetization, together with the
histogram of the magnetization angle for Z(6) on a 643 lattice. One sees that below the critical
coupling at β = 2.97 the symmetry is not broken on this lattice. Only starting from approximately
β = 2.7 one can observe the appearance of a symmetry-broken phase. In addition, we have
studied the behavior of the population susceptibility below βc = 3.00683. Fig. 4 shows that it
has a second broad maximum, which slowly moves to βc = 3.00683 with increasing lattice size.
A similar picture is observed for all N � 5. While, however, for N = 5 the peak of the population
susceptibility moves rather fast and practically collapses with the peak at the critical coupling on
the largest available lattice L = 96, for larger N the peak stays rather far from the corresponding
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Fig. 3. Scatter plots for the magnetization (top) and the rotated magnetization (middle), histogram of the magnetization
angle (bottom) for the 3D Z(6) vector gauge model on a 643 lattice for β = 2.7 (left) and β = 2.97 (right).
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Table 7
Same as Table 5, with subleading corrections (term with the exponent Δ) included in both the fits for γ /ν and for β/ν.

N βpc, χ
(M)
L

max βf,U
(M)
L f = U

(M)
L crit βf,U

(M)
L f > U

(M)
L f βf,U

(M)
L f < U

(M)
L f

2 0.03(2) 0.032(11) 0.025(18) 0.033(10)
0.534(11) 1.37 0.536(8) 0.63 0.536(8) 0.63 0.524(5) 0.78
1.97(2) 1.74 1.968(11) 0.49 1.975(8) 1.67 1.967(10) 1.68
3.04(4) 3.04(2) 3.05(3) 3.01(2)

4 0.041(5) 0.039(12) 0.049(14) 0.044(6)
0.527(2) 3.51 0.535(3) 1.71 0.535(3) 1.71 0.535(3) 1.71
1.959(5) 1.15 1.961(12) 0.89 1.951(14) 1.74 1.956(6) 0.80
3.012(10) 3.032(19) 3.02(2) 3.027(13)

5 0.036(8) 0.037(5) 0.029(12) 0.036(8)
0.504(6) 3.48 0.5035(13) 0.52 0.500(4) 3.04 0.504(6) 3.48
1.964(8) 0.67 1.963(5) 0.44 1.971(12) 0.80 1.964(8) 0.67
2.97(2) 2.970(7) 2.97(2) 2.97(2)

6 0.040(11) 0.038(10) 0.030(5) 0.026(16)
0.523(2) 0.97 0.523(2) 0.97 0.523(2) 0.97 0.488(4) 0.98
1.960(11) 1.68 1.962(10) 0.77 1.970(5) 0.95 1.974(16) 0.97
3.005(17) 3.007(15) 3.015(11) 2.95(2)

8 0.038(13) 0.042(10) 0.034(4) 0.048(12)
0.58(4) 149. 0.497(3) 1.72 0.497(2) 3.43 0.509(3) 0.82
1.962(13) 1.00 1.958(10) 1.27 1.966(4) 0.65 1.952(12) 0.82
3.11(10) 2.952(16) 2.960(8) 2.97(2)

13 0.031(10) 0.038(9) 0.029(7) 0.038(6)
0.508(6) 4.25 0.494(2) 0.95 0.4924(17) 1.56 0.493(4) 5.99
1.969(10) 0.89 1.962(9) 0.87 1.971(7) 1.37 1.962(6) 1.12
2.98(2) 2.951(14) 2.956(11) 2.948(15)

20 0.036(10) 0.036(8) 0.01(6) 0.033(4)
0.503(9) 13.6 0.497(2) 1.15 0.491(2) 4.35 0.4976(19) 1.99
1.964(10) 2.10 1.964(8) 0.84 1.99(6) 134. 1.967(4) 1.00
2.97(2) 2.957(13) 2.98(7) 2.962(8)

Fig. 4. Population susceptibility χP for the 3D Z(6) vector gauge model on lattices with L = 48 (red), 56 (green) and
64 (blue) versus β . The error bars are not shown. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Table 8
Critical index ν of 3D Z(N) vector gauge models with N = 2,4,5,6,8,13,20 deter-
mined by the fit given in Eq. (21) on the peak of the heat capacity, for different choices of
the minimum lattice size Lmin. The two sets of parameters refer to the cases of subleading
corrections (term with the exponent Δ in Eqs. (21)) not included in the fit or included with
Δ fixed at 0.5. The χ2 of the fits, given in columns four and six, are the reduced ones.

N Lmin No subl. corr. With subl. corr.

ν χ2
ν ν χ2

ν

2 8 0.6108(4) 8.00 0.6185(4) 0.44
16 0.6132(4) 1.37 0.6214(16) 0.42
24 0.6143(6) 1.04 0.623(4) 0.46
32 0.6154(7) 0.51 0.627(7) 0.42

4 8 0.6117(9) 3.27 0.6223(17) 0.79
16 0.6146(9) 1.16 0.629(4) 0.72
24 0.6168(14) 0.81 0.634(9) 0.57

5 8 0.6047(6) 5.35 0.639(2) 0.89
16 0.6338(12) 1.94 0.6410(8) 0.08
24 0.6360(6) 0.22 0.6409(15) 0.17

6 8 0.6300(10) 21.3 0.640(5) 16.5
16 0.6348(8) 1.78 0.642(3) 0.97
24 0.6360(10) 1.57 0.646(3) 0.61

8 8 0.6293(6) 78.6 0.6385(18) 19.3
16 0.6320(4) 11.4 0.637(3) 9.71
24 0.6336(3) 2.40 0.631(10) 11.8

13 8 0.6294(6) 68.6 0.6411(3) 2.11
16 0.6323(4) 9.04 0.6425(7) 1.80
24 0.6340(4) 2.52 0.6442(13) 1.87

20 8 0.6285(5) 53.8 0.6428(8) 6.79
16 0.6304(3) 5.19 0.6472(17) 5.19
24 0.6314(3) 2.35 0.657(3) 2.84

critical coupling, even for L = 96 (with our data we cannot even exclude a situation when the
convergence of the second maximum is logarithmic). We can imagine two scenarios to explain
such behavior:

1. This symmetric phase exists only in finite volume. When the lattice size increases, the second
maximum approaches the critical coupling and, eventually, the symmetric region shrinks and
disappears. The explanation proposed in [13,14] might work in this case, too. Namely, the
symmetric phase on the finite lattice is a phase with a very small mass gap and describes a
crossover region to the symmetry-broken phase.

2. For N > 5 the second maximum of the population susceptibility stays away from the critical
couplings even in the infinite volume limit. In this case it might correspond to some higher
order phase transition and the symmetric phase with tiny or even vanishing mass gap exists
also in the thermodynamic limit.

In both cases it is tempting to speculate that this symmetric region is reminiscent of the massless
phase which appears in these models at finite temperature [17]. Whichever scenario of the above
two is realized, one needs to study the models on much larger lattices to uncover it.
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6. Summary

In this paper we have studied the 3D Z(N) LGT at zero temperature aiming at shedding
light on the nature of phase transitions in these models for N � 4. This study was based on
the exact duality transformations of the gauge models to generalized 3D Z(N) spin models. In
Section 2 we presented an overview of the exact relation between couplings of these two models.
In Section 3 we have studied the models analytically using a version of the phenomenological RG
based on the preservation of the mass gap combined with a cluster decimation approximation.
This study provided us with an approximate location of the critical couplings as well as with
the value of the index ν. These calculations show that the index ν is approximately the same
for N = 2,4, ν ≈ 0.616, indicating that these two models might belong to the same universality
class. We find ν � 2/3 and approximately equal for all N > 4. Hence, Z(N > 4) vector LGTs
belong to a different universality class.

The numerical part of the work has been devoted to the localization of the critical couplings,
computation of the various critical indices and check of the hyperscaling relation. The main
results can be shortly summarized as follows:

• We have determined numerically the position of the critical couplings for various Z(N)

vector gauge models. For N = 2,3 we find a reasonable agreement with the values quoted
in the literature. For larger N , we have significantly improved the values given in [10]. This
allowed us to improve the scaling formula for the critical couplings with N .

• The critical indices ν and η derived here for N = 2,4 suggest that these models are in the
universality class of the 3D Ising model, while our results for all N > 4 hint all vector
Z(N � 5) LGTs belong to the universality class of the 3D XY model. This is especially
evident from the value of the index ν, which stays very close to the XY value, ν ≈ 0.6716,
given in [22]. The index α in this case takes a small negative value. It thus follows that a
third order phase transition takes place for N � 5.

• A careful investigation of the specific heat and of the index α extracted from it suggests
however a more complicated picture of the critical behavior. In this case we find a value
which roughly agrees with the value of 3D Ising model for all N studied. The fact that we
observe two different values of the index α dependently on whether we approach the critical
point from below or from above leads to the conclusion that the first derivative of the free
energy could exhibit a cusp in the thermodynamic limit if N > 4.

• Our data also revealed the existence of a symmetric phase for all Z(N) vector LGTs if
N > 4. However, substantially larger lattices are required to see if this phase survives the
transition to the thermodynamic limit.
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