3,110 research outputs found

    Fiber distributed feedback laser

    Get PDF
    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs

    Optimisation of distributed feedback laser biosensors

    Get PDF
    A new integrated optical sensor chip is proposed, based on a modified distributed- feedback (DFB) semiconductor laser. The semiconductor layers of different refractive indices that comprise a laser form the basis of a waveguide sensor, where changes in the refractive index of material at the surface are sensed via changes in the evanescent field of the lasing mode. In DFB lasers, laser oscillation occurs at the Bragg wavelength. Since this is sensitive to the effective refractive index of the optical mode, the emission wavelength is sensitive to the index of a sample on the waveguide surface. Hence, lasers are modelled as planar waveguides and the effective index of the fundamental transverse electric mode is calculated as a function of index and thickness of a thin surface layer using the beam propagation method. We find that an optimised structure has a thin upper cladding layer of ~0.15 mum, which according to this model gives detection limits on test layer index and thickness resolution of 0.1 and 1.57 nm, respectively, a figure which may be further improved using two lasers in an interferometer-type configuration

    Optically pumped GaAs surface laser with corrugation feedback

    Get PDF
    A GaAs distributed-feedback laser was fabricated and pumped optically. A narrow stimulated spectrum was obtained around 0.83 µ with threshold pumping power of ~2 × 10^5 W/cm^2

    A GaAs-based self-aligned stripe distributed feedback laser

    Get PDF
    We demonstrate operation of a GaAs-based self-aligned stripe (SAS) distributed feedback (DFB) laser. In this structure, a first order GaInP/GaAs index-coupled DFB grating is built within the p-doped AlGaAs layer between the active region and the n-doped GaInP opto-electronic confinement layer of a SAS laser structure. In this process no Al-containing layers are exposed to atmosphere prior to overgrowth. The use of AlGaAs cladding affords the luxury of full flexibility in upper cladding design, which proved necessary due to limitations imposed by the grating infill and overgrowth with the GaInP current block layer. Resultant devices exhibit single-mode lasing with high side-mode-suppression of >40 dB over the temperature range 20 °C–70 °C. The experimentally determined optical profile and grating confinement correlate well with those simulated using Fimmwave

    Monolithic quantum-dot distributed feedback laser array on silicon

    Get PDF
    Electrically-pumped lasers directly grown on silicon are key devices interfacing silicon microelectronics and photonics. We report here, for the first time, an electrically-pumped, room-temperature, continuous-wave (CW) and single-mode distributed feedback (DFB) laser array fabricated in InAs/GaAs quantum-dot (QD) gain material epitaxially grown on silicon. CW threshold currents as low as 12 mA and single-mode side mode suppression ratios (SMSRs) as high as 50 dB have been achieved from individual devices in the array. The laser array, compatible with state-of-the-art coarse wavelength division multiplexing (CWDM) systems, has a well-aligned channel spacing of 20 0.2 nm and exhibits a record wavelength coverage range of 100 nm, the full span of the O-band. These results indicate that, for the first time, the performance of lasers epitaxially grown on silicon is elevated to a point approaching real-world CWDM applications, demonstrating the great potential of this technology

    All-optical 2R regeneration using the hysteresis in a distributed feedback laser diode

    Get PDF
    A broadband optical 2R regenerator based on a single distributed feedback laser is demonstrated for nonreturn to zero signals at a bitrate of 10 Gb/s. A semi-analytical approach for the influence of hysteresis on the transfer function of a 2R regenerator is shown

    Laser action generated within a light pipe: A concept

    Get PDF
    Laser light could be generated within light pipe itself, thereby eliminating coupling losses. Theoretical calculations have shown feasibility of light-pipe laser propagating in circularly-polarized TE mode. It is predicted that fiber-optic distributed-feedback laser would have gain on order of 25 dB

    Integrated Phase-locked Laser Diodes at 1.55μm

    Get PDF
    Two types of integrated phased locked laser diodes operating at 1.55 μm were demonstrated, using either a distributed feedback laser seeding source or a self-locking multi-mode interference array. Both exhibited far field patterns that reflected mutual coherence between the light from the output waveguides
    • …
    corecore