13,954 research outputs found
Recommended from our members
Existence and uniqueness of solution for multidimensional parabolic PDAEs arising in semiconductor modeling
This paper concerns with a compact network model combined with distributed models for semiconductor devices. For linear RLC networks containing distributed semiconductor devices, we construct a mathematical model that joins the differential-algebraic initial value problem for the electric circuit with multi-dimensional parabolic-elliptic boundary value problems for the devices. We prove an existence and uniqueness result, and the asymptotic behavior of this mixed initial boundary value problem of partial differential-algebraic equations
Existence and uniqueness of solution for multidimensional parabolic PDAEs arising in semiconductor modeling
This paper concerns with a compact network model combined with distributed models for semiconductor devices. For linear RLC networks containing distributed semiconductor devices, we construct a mathematical model that joins the differential-algebraic initial value problem for the electric circuit with multi-dimensional parabolic-elliptic boundary value problems for the devices. We prove an existence and uniqueness result, and the asymptotic behavior of this mixed initial boundary value problem of partial differential-algebraic equations
Bus energy consumption for multilevel signals
A comprehensive analysis of energy consumption for voltage-mode multilevel signals on a nanometer-technology bus is presented. A transition-dependent model is used which allows simplified calculation of the energy consumption. The accuracy of the approach is demonstrated using circuit simulations of three different electrical models of the bus, namely, lumped-C, distributed-RC, and distributed-RLC networks. We also verify that bus energy consumption is independent of driver resistance, as predicted by the model. Finally, we present a comparative analysis of power consumption for multilevel and binary buses
Multi-user video streaming using unequal error protection network coding in wireless networks
In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks
Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle.
The orientation of the light-chain region of myosin heads in relaxed, rigor, and isometrically contracting fibers from rabbit psoas muscle was studied by fluorescence polarization. Cysteine 108 of chicken gizzard myosin regulatory light chain (cgRLC) was covalently modified with iodoacetamidotetramethylrhodamine (iodo-ATR). Native RLC of single glycerinated muscle fibers was exchanged for labeled cgRLC in a low [Mg2+] rigor solution at 30 degrees C. Troponin and troponin C removed in this procedure were replaced. RLC exchange had little effect on active force production. X-ray diffraction showed normal structure in rigor after RLC exchange, but loss of axial and helical order in relaxation. In isolated myofibrils labeled cgRLC was confined to the regions of the sarcomere containing myosin heads. The ATR dipoles showed a preference for orientations perpendicular to the fiber axis, combined with limited nanosecond rotational motion, in all conditions studied. The perpendicular orientation preference was more marked in rigor than in either relaxation or active contraction. Stretching relaxed fibers to sarcomere length 4 microns to eliminate overlap between actin- and myosin-containing filaments had little effect on the orientation preference. There was no change in orientation preference when fibers were put into rigor at sarcomere length 4.0 microns. Qualitatively similar results were obtained with ATR-labeled rabbit skeletal RLC
On the potential of using fractional-order systems to model the respiratory impedance
This contribution provides an analysis of the human respiratory system in frequency domain by means of estimating the respiratory impedance. Further on, analysis of several models for human respiratory impedance is done, leading to the conclusion that a fractional model gives a better description of the impedance than the classical theory of integer-order systems. A mathematical analysis follows, starting from the conclusions obtained heuristically. Correlation to the physiological characteristics of the respiratory system is discussed
- …