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Existence and uniqueness of solution for multidimensional

parabolic PDAEs arising in semiconductor modeling
Giuseppe Ali, Nella Rotundo

Abstract

This paper concerns with a compact network model combined with distributed models for
semiconductor devices. For linear RLC networks containing distributed semiconductor devices,
we construct a mathematical model that joins the differential-algebraic initial value problem for the
electric circuit with multi-dimensional parabolic-elliptic boundary value problems for the devices.
We prove an existence and uniqueness result, and the asymptotic behavior of this mixed initial
boundary value problem of partial differential-algebraic equations.

1 Introduction

The main ingredient used in circuit simulation is the lumped network equations for the simulation of
the network designs. The application of the Modified Nodal Analysis (MNA) formalism yields a system
of differential-algebraic equations (DAEs), that can be classified using the index concept [1]. The
index determines the number of inherent derivatives that are needed to derive the ordinary differential
equation. Different index cases can only be distinguished by structural means for the classical MNA
equations. Using for instance the tractability index [2]], one decomposes the set of variables accordingly
and projects parts of the equations.

The transition from microelectronics to nano-electronics requires a more systematic study of the
coupling effects. These effects are particularly relevant in integrated circuit modeling, and their rel-
evance increases with the decreasing of the scales. Relevant examples are, e.g., electrothermal cou-
pling [3-5], electromagnetic coupling [6l7], or electric network-device coupling [8H10].

In the modeling of the coupling effects there is a basic set of “lumped” differential-algebraic equations,
generally the electric network equations, and a set of “distributed” partial differential equations, which
model phenomena which arise at a different, finer scale. The coupling involves an interplay between in-
tegrated quantities coming from the distributed model, which enter the lumped equations, and lumped
variables which are related to boundary data for the distributed equations. This leads directly to cou-
pled systems of differential-algebraic equations (DAEs) for the electric network and partial differential
equations (PDEs) for the semiconductor devices. The coupling has two parts. On the one hand, an
additional source term occurs in the current balance of the electric network. On the other hand, the
boundary conditions of the device equations depend on the time-dependent node potentials, which
are genuine unknowns of the electric network.

In this paper, we focus on the electric network-device coupling. We consider an electric network which
contains semiconductor devices, modeled by multi-dimensional, parabolic, drift-diffusion equations.

The coupling of the drift-diffusion model with the electric network equations have been extensively
studied. The well-posedness of the resulting coupled system has been investigated for the steady-
state (elliptic) one-dimensional case in [3,[8] and in the index-1 and index-2 multidimensional case
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G. Ali, N. Rotundo 2

respectively in [11] and [12]. The uniqueness for data close to equilibrium in the steady-state (elliptic)
one-dimensional case is proved in [13]. In [14] is given a systematical approach for the decomposition
in case of index grater than 2.

Other fundamental works in the direction of the study of coupled model within the framework of abstract
differential-algebraic equations are [2,15,/16]. The more recent publication [17/] summarizes the state
of the art of such coupled models in the simulation of electric circuits.

The present paper is strongly related to [9], where the authors prove existence and uniqueness result
for the time-dependent (parabolic—elliptic) one-dimensional case. We establish existence and unique-
ness of solution for an index-1 parabolic partial differential-algebraic equation.

The work is organized as follows. Section 2 covers the modeling of the coupled system; both sub-
systems are described in detail and the coupling terms are defined. In Section 3 we state the main
result. First, we prove the local existence and uniqueness of solution and then using some a priori
estimates we extend the solution globally. Section 4. concerns with the asymptotic behaviour of the
solution when time tends to infinity.

2 Coupled circuit-device model

We consider electric networks which include some components described by distributed equations.
The specific application we have in mind is a model for an integrated circuit with semiconductor de-
vices. Nevertheless, this model is susceptible of different generalizations and extensions.

In this section we present the general coupled model, postponing to a later section the clarification of
the needed mathematical assumptions.

An electric network is described by the electrical potentials at the nodes and by the currents through
the branches. Using the approach of Modified Nodal Analysis (MNA) [18L[19], the electric network
equations can be obtained by the Kirchhoff current law, replacing the constitutive equations for the
currents through branches with capacitors and resistances, and by the constitutive equations for the
remaining components.

2.1 Network models for electric circuits.

We consider a linear RLC network, that is, a network which connects n¢ linear capacitors, n, induc-
tors and n g resistors, and n; independent voltage and ny current sources. We assume that the net-
work connects also semiconductor devices connected with circuit by Ohmic contacts. We assume that
the network has m nodes plus the ground node, where the potential is zero. We denote by u(t) € R™
the node potentials, by i.,(f) € R™ the currents through inductors, by ¢y (t) € R™ the currents
through voltage sources, by vy () € R™V the independent voltage sources, and by 4;(t) € R™ the
independent current sources. The MNA system of equations can be written as

d
ACCAE&U -+ ARGA—];’U, + Arir + Aviy + ED(JZ) = A['i](lf), (1a)
d.
LazL —Alu=0, (1b)
—Aju = vy(t), (1o)
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 3

or in a compact form
dx

dit
which is a differential-algebraic equation for the unknown

M— + Nx + sp(x) = s(t). )

Uu
x=|t,| ER™, nye=m+ny+ny.
(2%
The matrices in (2) are given by
AcCAL, O O ARGA, A, Ay Agigf(t)
M = O L O, N=| -A;, O O}/, st)=| O
(0 O O —AI/ O O vy (t)

Here, Ao € R™*"¢ Ap € R™"r A; € R™*" A, € R™"™" _ A; € R™*™  are incidence
matrices, which describe the topology of the network. Moreover C' € R"¢*"c¢ G € R"¢*"¢ gnd
L € R"*"L denote the capacitance matrix, the conductance matrix and the inductance matrix,
respectively, which are regular.

The term sp () in (2) represents the coupling with semiconductor devices and it will be described in
details later on. It is related to the equation through the relation

sp(x) = WTED(THB),

where w = [I 0 O} € R™*™ s a projection matrix which selects the first block of the circuit
unknown x, so that u = wx.

We supplement equation (2) with consistent initial data

QI(to) = Xy, (3)

this consistency will be discussed in the next section.

2.2 The d-dimensional diode model.

For simplicity we consider a network containing only one semiconductor device. The case of circuits
with many devices can be dealt using the same arguments, but the notation would be much heavier.
We consider a semiconductor device with mp + 1 terminals. The device can be modeled by means
of a domain 2 C R, characterized by a doping profile C'(x), with x € . For the derivation of
the model we refer to the classical literature such as [20] or more recent [21]. We neglect all thermal
effects, and assume that two carriers are responsible for the diodeOs output current, that is, electrons
with negative charge —¢, and holes with positive charge ¢. The behavior of the device is described
in terms of number densities of electrons and holes, denoted by n(x, t), p(x, t), current densities for
electrons and holes, denoted by J,,(x, t), J,(x, ), and electrostatic potential, denoted by (x, t),
t € [0, T]. These variables satisfy the following drift-diffusion system

—V (V) =q(p—n+C), (4a)
—qomn+V -J, =qR, (4b)
@O +V - J, = —qR, (4c)

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019



G. Ali, N. Rotundo 4

forx € Qandt € [0,7)]. In @) the dielectric permittivity ¢, = €€, is given as the product of the
vacuum dielectric permittivity €y and the relative permittivity of the semiconductor material €,. The
current densities in and are given by the usual expressions
Jn =q(D,Vn —p,nVy) and  J, = —q(D,Vp+ u,pVip). (4d)
In (4d), D,, and D, are the diffusion coefficients related to the mobilities 1., and 11, of electrons and
holes by the Einstein’s relations
Dn = UT,Mna Dp = UTMp) (5)

where Uy is the thermal voltage given by Ur = kgf/q, in which kg indicates the Boltzmann constant
and @ is the globally constant temperature for both carrier species and the crystal lattice. The net
recombination rate R(n, p) on the right-hand side of equations and describes the generation
or recombination of carriers due to various scattering effects. Considering Boltzmann statistics, the
recombination rate has the form

where n; is the constant intrinsic concentration. We assume that r(n, p) is a regular function, with

r(n,p) > 0 for all n, p, and such that R(n,p) is Lipschitz continuous, which means for different
electron and hole densities 11, 115 and p1, ps respectively, we have

| R(n1,p1) — R(na, p2)| < Lr([ny — naf + [p1 — p2)), (7)

with Lipschitz constant L. The Shockley-Read-Hall recombination mechanism for example satisfies
this property.

We supplement the system (4) with the initial conditions at time ¢ = 0
n(x,0) =ng(x),  p(x,0) =po(x) for x € (8)

Concerning the boundary conditions, since we consider a semiconductor device containing mp + 1
terminals we have thatthe boundary OS2 of the domain €2 contains m p -+ 1 open, disconnected subsets

I'pi,t=0,1,...,mp, representing the terminals of the device
mp
00=TpNTy, Tp=|JTp; Ty=00\Tp. (9)
i=0
On I'p we assume Dirichlet boundary conditions, that is
n(x,t) = nD(X>7 p(Xa t) = pD(X)a X € 1—‘D (103-)
P(x,t) = Yp(x) + up,(t), xelp,;, i=0,1,...mp (10b)
where
=S4/ (€ 2+n2 -9 92+n2
D — 9 9 i Pp = 9 9 i
and n
Yo = Urln 2

I
The external potentials up ;,72 = 0,...mp coincide with the electric potentials at the nodes of the

network which correspond to the terminals. They represent the coupling with the circuit, and will be de-
scribed later. On the remaining boundaries one typically imposes homogeneous Neumann boundary
conditions, namely

Vip(x,t)-v=J,(x,t) - v=J,(x,t) - v=0, xely, tel0,T]. (10c)
In (10c), v denotes the outer normal vector on the boundary.
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 5

2.3 Coupling conditions

In this section we explain the coupling conditions between the network and the device. We describe in
details the term sp(x) in (2) and its relation with the external potentials up ;,i = 0, ...mp in (T00).

We start defining the total electric current through the Dirichlet terminals. Taking the time derivative of
the Poisson equation and using the continuity equations and (4c), we obtain

V- (—e0VY+J,+J,) =0. (11)
Integrating the above identity on €2 and using Gauss's divergence theorem, recalling the Neumann’s
boundary conditions (10c), we get

mp

Z/ (—esO VY +J, +J,) - v;do = 0. (12)
I'p

=0

We identify the total current through I'p ; with

)

JDi::—/ (—esO VY +J, + J,) - v, do, 1=0,1,...,mp, (13)
I'p

which is the sum of the so-called displacement current — that is, the time derivative of the electric field
— with the currents due to carriers. We note that, by construction, the currents satisfy the identity

> Jpi=0. (14)
=0

Next, we need to define in a proper way the electric currents flowing through the Ohmic contacts,
which will be used for the coupling to the circuit. At this aim, we introduce the auxiliary functions w;,
1 =20,1,...,mp, defined by the following elliptic boundary value problem:

—V - (esVw;) = 0, in€Q,

w; = 0, onlpy, j=0,1,....,mp, (15)
ow;

(3 — O 1—\
ov o onEN

where 0;; is Kronecker's delta (0;; = 1if i = j, 0;; = 0if i # j).

Then, it is convenient to define the electric current Jp ; flowing through the i-th Ohmic contact I'p ; by
the volume integral

JD,i(t) = — / sz . (—EsatV@U + Jn + Jp) dX. (16)
Q
For later use, we decompose the electric potential by means of the auxiliary functions w;. We introduce
the stationary part 1* of the electric potential, defined as the solution of the problem

-V - (e,VY*) =qC, inQ,
P* = i, onI'p, (17)
v-VyY* =0, onI'y.
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We define the linear functional £(p), which to the function p associates the function ¢ = L(p),

solution of the problem:
-V (GSVQO) =p, in Q,

p =0, onl'p,
v-Vyo=0, on['y.

Then we can write the electrostatic potential as

Y =9YP" + Z wiup,; + L(gp — qn).

1=0

Using this decomposition, the electric current .Jp ; becomes

mp

dUD7' .

Jpi = E Cpij dtj + Ip.i(Jn+Jp), 1=0,1,...,mp,
Jj=0

where

CD,ij = Esvwi ' vw]dxu ZJ.] = 07 17 ..., Mp,
Q

and we have introduced the functional Jp ; which to any vector function J (X) associates
T s(J) = —/ Vi - (e, VL(V - J)+J) dx i=0.1,....mp.
Q

To write (18) in compact form, we introduce the vectors

JD,o Up,o jD,O
Jpa Up, JIpa

JD = . 5 Up = : 5 jD = : )
JD,mD UD,mp jD,mD

and the matrix C'p = (Cp.ij)ij=o1...mp € RMDFVXMDHD) Then we can write

~ du
Jp = ch—tD + Tp(Jn+J,).

The currents through the interfaces are not independent, due to (14), which implies

mp
Jpo = — E Ip,i-
i=1

Moreover, it is possible to prove that
mp
ZCD7ij:0’ iZO,l,...7mD.
§=0

It is convenient to introduce the vectors

JIp.1 Up,1 — Up,o JIp1

ID: ) Up = 5 ID: : s

Ipmp UDmp — UD,0 ID.mp

(22)

(23)
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 7

and the matrices Cp = (Cp ;)i j=1. .mp € R™P*™> and

-1 -1 .- —1
1 0 0
A,=|0 1 - 0
00 1]
Then we can write R T
Jp=Aplp, vp=Apup, (24)
and can be replaced by
dv
Ip :CDd_tD +Zp(Jn+J,). (25)

~ ~ ~T
In particular, combining and (25), and comparing with (21), we have the identity Cp = ApCpA .

Circuit-to-device coupling conditions

To relate the potentials up, applied at the mp + 1 contacts of the device, with the network potentials
u, we need to introduce a contact-to-node incidence matrix, which relates the device’s contacts to the
network nodes, selecting the node which corresponds to each contact. For this reason, we will call this
matrix selection matrix, and denote it by Sp = (SD,ij) € Rmx(mp+1) The sifting matrix is defined
by:

. 1, if the contact 7 is connected to the node ¢, (26)
D.ij 0, otherwise.
By virtue of this definition, we can write
up = SlT)u. (27)

The components u are the first block of the circuit unknown x so that using the projection matrix 7
defined in Sec2.1] we can also write
up = ngz. (28)

We refer to relation as the circuit-to-device coupling condition, that can be also written using the
voltage drop v defined in (23):
vp = A7z, (29)

with AD = SD.IE.D.

Device-to-circuit coupling conditions

Using the selection matrix S'p and the projection matrix 7r, we can express the term sp appearing in

@) as:
SDIWTSDJD:TFTADID, (30)

which also means £p = SpJp = Aplp. Using the representation (25), we get
dx
sp = WTADCDAET&'E + 7" ApZp(J, +J,). (31)

We refer to this relation as the device-to-circuit coupling condition. The term Zp(J,, + J p) depends
only on the voltage drops vp = Agﬂ'a:, so we will write ID(AETFCC) to make this dependence
explicit.

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019



G. Ali, N. Rotundo 8

2.4 Circuit unknowns decomposition and topological conditions

The circuit equations (2) can be written in the form

dx
EE = Ax + Fp(x) + s(t), (32)
where
E=M+ WTADCDABTF,
A=-N, (33)
Fp(x) = —m  ApZp(Ajme).
Using a well-established procedure [22], we decompose the circuit’s unknowns into a differential com-

ponent and an algebraic component. Due to the special structure of the system, it is sufficient to
impose index-1 topological conditions. To do so, first we write the system in the equivalent form:

E, <Pccll—?; + Qz) = Ay + Fp(Py + Qz) + s(t), (34)

where y = Px, z = Qx, with Q projector onto ker(E), P = I — Q the complementary projector
of Q, and

We have explicitly
Qep 0 O )
Q=| O O O|, Q¢pprojectoronto ker [Ac Ap| . (36)
O O 1

Then the index-1 conditions should ensure that E'; is invertible and F, depends only on y. If this is
the case, we can decompose as follows:

d
S = PE (Aw+ Fo(Py) + (1)), &
z = QE;'(Ayy+ Fp(Py)+s(t)). (38)

We can see that the first equation is decoupled from the second equation and can be solved for y.

For our system, the index-1 conditions are [22,23]:

ker(AD7 AC7 AR7 AV)T = {0}7 (39)
ker QppAy = {0}. (40)

These conditions ensure also that F, depends only on vy, since we have
Fp(Py + Qz) = —wTADID(AlT)ﬂ'(Py +Qz)),

and A,7Q = [A,Qcp O O] = O by construction.

We also have - -
QE'=E,'Q", E,=E-Q'AQ, (41)

which implies QE;'w " Ap = 0, and thus

QE;'Fp(Py) =0. (42)
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 9

In turns, this yields a simplification of the decomposition (38), that is,

z=QE;" (Aiy+s(t)). (43)

Finally, we discuss the consistency of the initial data (3). From the above discussion, we see that we
can only supplement the with the initial data

y(to) =y, = Pxy. (44)
Then the algebraic part zo = Qx of the initial data (3) must satisfy the consistency condition

zZ0 — QEl_l (Alpyo + S(to)) .

3 Global existence and uniqueness results

The main results of this paper is the existence and uniqueness of the solution of the problem (2)-(4)
with boundary and initial conditions and (8) and coupling conditions and and additional
topological index-1 conditions (39)-(40). We summarize here the equations for the reader’s conve-
nience:

d
o = PE (A + Fp(Py) +s(t),  in(0.7], (12)
z=QE;' (Ayy+s(t)), (1b)
y(to) = yo = Pxo, (1c)
~V - (e,VY) =q(p—n+C), (1d)
qOp+V - J, = —qR, J, = —q(D,Vp+ p,pVi), (1f)
n=np, P = Db, in (07 T] X FDa (19)
w :wbi—i_'u’D,i? in (OuT] X FD,iu i :()717"'mD7 (1h)
Vy-v=Jd, v=J, vr=0 in (0,7] x 'y, (1i)
n(X7 O) - TL()(X), p(X, 0) = pO(X) in Qa (1])
up =Sz, (1k)
Fp(Py)=—n"ApZp(J, +J,). (11)

First, we show that a unique solution exists for small time interval, then we prove a priori estimates
and, finally using these estimates we prove that this solution can be extended for all time intervals.

Let us start introducing the notation on functional spaces. We denote by L™ = L"(f)) and Whr =
WH"(€) the usual spaces of functions, with norms ||-||, and ||-||,,,., respectively, and we denote
H* = W*?2,|24]. We also use the space L? of all functions in L? which are nonnegative almost ev-
erywhere. Let [0, T'] be a bounded time interval. For any Banach space V', we denote by C'([0, T']; V'),
L"([0,T];V), and H*([0,T]; V) the usual spaces of functions defined on [0, T'] with values in V.

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019
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For the purposes of this paper, we introduce the following Banach spaces:
W02’r = {u e w2 ! ulr, =0, v-Vulr, = 0}7
X ={ueH"|ulr, =0},
Y = C([0,T); L%) n LA([0, T}; X) N H*([0, T); X*),
W =Y xY x {C([0,T); W) N L*((0, T|; Wy™") n H'([0, T]; X) },
Cr = C([O,T];Rm+"L),
Cy = C([0, T); R™ ™),
where X ™ is the dual space of X.

We introduce a special steady-state solution (n®, p®, 1/°) of (1d)-(Tf) which corresponds to zero exter-
nal electric voltage source vy and electric current source %7, where the potentials applied to the diode
vanish. Furthermore, this solution shall satisfy the conditions

n® =niexp(v®/Ur),  p® = njexp(—y°®/Ur). (2)

A steady-state solution corresponding to these constraints represents a physical state in total ther-
modynamic equilibrium. The equilibrium voltage v° is uniquely determined by the following nonlinear
elliptic problem:

— V- (,VY) = qC — gqni (exp(¥/Ur) — exp(—/Ur))

V(1) = Us(x), X E€Tps i=0,1,...mp, ®)

where

2
Yo = Upln "2, nDZ%Jr (%) + n?.

Definition 1 (Solution to the coupled system) A solution of the system of equation (1a),(1b),(1d)-
with boundary conditions (1g)-(Ti) and initial conditions and (1]), coupling conditions (1K) and
and additional topological index-1 conditions (39)-(0) is a tuple (n, p, ), y, z) such that:

i) the unknown y belongs to C;, and satisfies
W _ pg (A ;

o 1 (Ary + Fp(Py) +s(t));

where the functional F, is defined in (33);
ii) z belongs to Cy and is given by

z=QE" (Aiy +s(t));

i) (n—mn,p—p° ¢ —y°) €Y,n,pe C(|0,T]; L3) satisty the initial conditions (T]);
iv) the triple (n, p, ) satisfies the Poisson equation forallt > 0;

v) for all test functions &,,, &, € Y, n and p satisfy the weak formulation
T
| [0 + (D.¥n — ¥, 9,) + (R &2)]at = 0, )
0
T
/ [(0ip, &) + (D VD + 1ypVeh, VE) + (R, &)]dt = 0, (4b)
0

where (-, -) is the usual pairing between X* and X .

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019



Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 11

3.1 Local existence and uniqueness
We start by proving the following result.

Theorem 1 (Local existence and uniqueness) Let the source functions i;(t) and vy (t) be con-
tinuous, let the network matrices be symmetric, positive definite and the topological conditions
and be fulfilled, and let diffusivities and mobilities be constant. Then problem (1)) admits a unique
solution, provided I’ > 0 is sufficiently small.

Proof. We introduce the Banach space
7 = (n°p°) + C([0,T); L* x L*) n L*([0,T); X?)

and fix the pair of functions (7,p) € Z and gy € Cp, with 2(-,0) = ng(-), p(-,0) = po(-), and
y(0) = y,. We consider the following linearized problem for (1, p):

T
| (0.0 + (D.V0+ i E.V6) + (R )] at = . 5a)
0
T
/ [(Op.6,) + (DyVp — uyp B, VE,) + (BF,€,)]dt = 0, (5b)
0

for all test functions &,, &, € Y. We have indicated with 2+=R(72*, 5*), in which we have used the
notation the notation g™ :=max(g, 0), for all function g and E = — V1) where ) is the solution of the
Poisson equation with source term ¢(p™ — n™ + C') and boundary conditions

'(b(X,t) :wbi(X)—FﬁD,i(t)? XGFD’Z', izO,l,...mD,

ﬁ'D = SET&'P@
We consider also the problem for y

d . .
o = PE (A + Fo(Py) + (1) (5¢)
with -

Fp(Py) = - ApZp(q(Du Vi — DoV + (paft + ppp)E)).

The system of decoupled equations admits a unique solution (n, p, y) which satisfies (n,p) €
(n®,p®) + Y2 y € Cr, and have the initial data n(-,0) = no(+), p(-,0) = po(-),y(0) = o, the
same initial data and of the original problem. In fact, the existence of a unique solution y
to follows immediately by time integration of the equation over [0, t]. Because of the continuous
embedding of H! into L* and the Poisson equation [25], we have the following estimates

I Ellz < cllaflal[Ells < el 2l Elliz < cllallia(1+ (9] + [17]l2 + [15]12)-

A similar estimates follows for the hole distribution. This means the terms 1,2 E and 1,p"E are
in L? so we can apply the standard results, see for example [24], for linear parabolic equations with
discontinuous coefficients to get the existence of a unique solution (n, p, y) to (5a)—(Gb). We define
an operator Q from Z x Cy to Z x Cp, which, to any (n,p,y) € Z x Cy, associates the solution

(n,p,y) of the problem

(7, 0,9) = (n,p,y) =: Q7, b, Y).

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019



G. Ali, N. Rotundo 12

Forall (n,p,y) € Z x Cr, we introduce the norm

ll(n. p. I* = max (In(- )5+ IpC I3 + [y®)]) +/0 IVl Oz + Ve, )3) dr

0<t<T

We prove that Q is is strictly contractive with respect to this norm, for 7" small enough, in the set
Sa={(n,p,y) € Z x Cp:n(-t) =no(-),p(-,t) = po(-),y(0) = yo. I (n, p, Y)||I”> < a}

where the constant a is such that a > ||ng |3+ ||pol|5+ |y, |*. We consider two triples (7, pe, U,) € S,
for ¢ = 1,2 and we set

(nbpf?yé) = Q(ﬁbﬁbgﬁ)a EZ = E(ﬁﬁ,ﬁé,@g), for ¢ = L 2

where E@ = —Vzﬂg depends on the solution @g of the Poisson equation with source term q(ﬁj —
ny + C) and the boundary term is related to ¢,. We write (@), with n = n; and n = na, both with
test function &,, = n; — ny. Subtracting the two equations and integrating over the time interval [0, ¢],
we obtain

1 t
sl = sl D [ 191 = na) o
t R ° R t N .
— —Mn/ (7 E1 — 5B, V(s — ma) ) o7 — / (fef = B ny = nz) o 6)
0
<o [ Vit & = Eall Vo — o)l + [ 1R — Rl = malor

in which R = R(n), p}), £ =1,2.

To estimate the first term on the right-hand side of (6), we first observe that, using the Gagliardo-
Nierenberg inequality and the weighted Young inequality, for any function u € H' we have

lulle < cllully™l[ulll o + cllull: < c(6)

(7)

where § > 0 can be chosen arbitrarily small, and 7 = d (% — %) € (0,1), if we choose 2 < r < 6.
Moreover, for > d, we can write

IE: — Ezlloo < cl|Ex — Eall1, < c(|9y — §al + [l — Rzl + [Ip1 — Bell»)-
and
IEalls < cl|Eall1z < c(1+ [@] + IR2ll2 + IP2]l2) < c(a).
Then we have
|77 By — 75 Eall2 < |71 [l2]|Ex — Ealle + [[Eallg[lia — a3
< cla)[clgy = Yol + c(8)([ln — Nal2 + [Ip1 — poll2) (8)
+0([[n = alle + D1 — Pallr2)].
So, we can estimate

o [ 50 = Al o = )
t
(a 6) / (8 — sl + 17 — ol + (151 — oll2) dr
h .
+5/0 (1fer = 7al} o + |IP1 — P2llio) dT + 0 i IV (n1 — no)|3dr

t
< max{c(a, 6)T, 6}[(¥, — Yo, 11 — D2, o1 — o)l + 5/ IV (n1 = mo)|I2 dr.
0
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 13

For the second term on the right-hand side of (€), using the definition (6) of the recombination term
and the assumption (7), we get

t t
/ VBf — R [lallny — nalls o7 < / Ll — fislls + 171 — Bollo)llmn — nalladr
0 0
t
= C Al_A22 A1—A22 1 — N2||l2| AT
< [ 1600 = il + 1 = )+ s ] o

t
< cO)T(Gy — Yoo fr — a2, 1 — Do)l + 5/ Iny = na 3 dr.
0

Combining the previous estimates, we get

1 t
sl = el Do [ 191 = ns) o
0
' (9)
< max{e(a, 8)T, S} |(91 — Fo, i1 — iz, by — fo)| + 6 / I — nal2, .
0

An analogous estimate holds for p; — ps, that is,

1 t
Sl = pall+ D, [ 1901~ o) o
’ (10)

t
<max{c(a, )T, 0}[|(F1 — Yo, M1 — N2, p1 — o)l + 5/ lp1 = P2 d7.
0

Next, we write fory = y,,y = y,, subtract the resulting equations, and multiply the result by
Y, — Y. We note that
P'E,\P=P'E|P, (11)

which, together with y, — y, = P(y, — y,), implies
d /1 d
3 (G0 -0 B - ) = - ) B - )
= (Y, —¥.) E\ {PE' (A9, + Fp(Py,)) — PE (A1, + F(Pys,))}
=(y;—y) ' {E1PE1_1A1 (U1 — U2) + Fp(PY,) — FD(P%)} .
After integrating with respect to time, we find

1

51— y,) E1(y, — y,)

t
= / (y1 - yz)T {(ElpEflAl(@1 - @2) + FD(P@l) - ]:D(Pflz))}dT
0
t t
< / g — o dr 4 c / (9 — il? + | Fo(Py) — Fo(Pgy)?) dr.
0 0

From the definition of Fp, we have

I Fo(Pg,) — Fo(P#:)* < ¢ |Tpi(J1) = Tpa(J2)I,
=1

with
Jo = q(D, N1y + pnii€e — DN Do + p,peEr), €=1,2.

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019



G. Ali, N. Rotundo 14

We notice that since 1 — 1 = 0 on I'p and v - V(7iy — 712) = 0 on I'y we have that

ny — Ny

L(A( — 7o) = —

€s

Using also the linearity of Jp ;(J) with respect to J, we find that
Ip.i(DpV (11 —n2)) = Ipi(DyV(p1 — pa)) =0,
and then
\Tp.i(J1) = Tpi(J2)| < apin|Tp i (i Ex — 12Es)| + qup| Tp s (51E1 — poE2)|.  (12)

Moreover, for any vector function J (x) such that v - J = 0 on Iy, we have

[Tpi(J)] =
< Vwill2(Iles VLV - Dl + [ T]l2) < cll ]2 (13)

/ Vs - (VLY - ) + J) dx

In fact, if we pose ¢ = L(V - J), we have by definition

—/goV-(engo)dx:/goV-de,
Q Q

which, integrating by parts and using the boundary conditions for ¢, and the condition for J, yields

[ elvelax == [ (v¢)- 7 6x < a1Vel3 + )T
Choosing the positive constant 4 small enough, we get
IVella < cfl 1|2, (14)
which implies the last inequality in (13). We can apply this result to (12), obtaining
|Tp.i(J1) = Tpa(J2)* < c(||nEy — iy |3 + [Ip1Er — poEsl3), (15)
which, in turns, yields

IFo(Pgy) — Fp(Po)* < cla)(cliy — 9 + c(0) ([l — nallz + [P1 — p2ll2)
+0(lln = hallf 5 + [1P1 — P2llf2))-

Since the matrix E; is positive definite, there exist a constant cg > 0 such that
T 2
y Evy > cplyl”.

Then, using the previous estimates, we find

1
(yl - yQ)TEl(yl —Yy)

2
< max{c(a,d)T, 6 }|[(Y, — Yo, 711 — N2, P1 — Do) ||| + Torga}T Y — y,|*. (16)

CE|'£I1 - y2‘2 <

Finally, we can combine (9), and (16), and choose 7" and J small enough so that

ICy1 = ¥, 11 = 9, p1 = P2)ll < colll(@r = Y20 1 = 72, 1 = Do),
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 15

for some positive constant cg < 1. So we have proved that there exists a time 7" > 0, such that Q
becomes a contraction on S, then the existence of a unique fixed point (1., p«, Yy, ) € S, itis ensured
by the Banach’s fixed point theorem. To show that this fixed point is the unique solution to (2)-(4), it is
sufficient to prove the nonnegativity of ., and p.. To this end, we consider n, = min(n,,0) € Y .
Writing (5a), for the test function &,, = n , we obtain

* 3

1 t t
sl @+ [ 190 ier = [ [ (cunt €. Vns = Rt i awer
0 0

t
= //r(nj,pj)n?n*ddeSO.
0 Jo

This means that n_ vanishes almost everywhere; that is, .. is nonnegative almost everywhere. In the
same way we can prove the nonnegativity of p,. [ |

To prove the general existence and uniqueness of solution of the problem we need to ensure that
it is possible to prolong to arbitrary time intervals the solution, whose existence is proved in theorem
[l

3.2 Global existence and uniqueness

In this section we prove some a priori estimates which allow for the prolongation of solution of problem

(). We start introducing the definition of the energy of the system which is the sum of two contributions
one is the energy associated to the device and the other is the energy associated to the circuit.

Energy associated to the device
The local physical energy associated to the device is defined as
n €s
wD:qUT{n(log——l) +p<log£—1>}+—\vw\2. (17)
n; N 2
Using the continuity equations in and (Tf), the time derivative of the local energy is given by
n P 1 1
duwp ==V -{ = Urlog “ T + Uplog 2.3, } — 3, - {Ur—Vn} + 3, - {Ur_vp}
n; T n P
np
—qUrRlog 2 + e,V - 0, V.
Considering the equations in (1d)-(Tf) and the Einstein’s relations (5), we get
n p
dywp + V- { — Uplog 20, + Uplog —Jp} _
N n;
1 72 1

2 -y {Jn v, - esatw} — qUrRlog 2.
qnipin qptip n;

(18)

The total energy associated to the device is defined by

WD_/’LUDdX.
Q
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Integrating on the domain {2 we have

dWD /v — Uplog 20, + Uplog £Jp}dx
n; T

J: g
:_/ <_n+ P >dx—/qUTRlogn—§dx (19)
Q “qdUnT  qlipp Q i

- /Q Vo (T + T, — 609 )ax

We apply the Gauss theorem on the second term, we use nppp = n? and the boundary conditions

/ V- (—UT log X7, + Uplog 2J,,>dx
Q N i

:Z/ UTlog—J +UTlog—J )da
o

:;/F _UTlog_<,] +T,) - vido = - Z/F Un (T + J,) - vido

Integrating by parts the last term in and using and (13), we obtain
= / V(T 4 T, = €070 )dx
)
_— / 1/;(.1" +J, - esatw) vdo + / e (Jn Ty - esﬁtvw)dx
o0 Q

:—Z/ wb,+uD, (Jn—I—Jp—EsatV@Z))'VidO'
I'p

= _ Z/ %. J +J, esatvz/}) -v,do + iUD,iJD,i-
I'p i=0

Then we can rewrite

dW J? J?
—D:—/<—"—|— L >dx—/qUTRlogn—];dx
dt qlnm  qlpp Q n

+ Z Voi(€,0, V) - vido + u), I p.

FDz

Energy associated to the circuit

The energy associated to the circuit without the device is

1 1+, .
We = §yTE1y — 2 TADC’DADﬂ'y = —uTACCACu + QzELzL. (20)
Using the circuit equations (Ta)-(1b), and the symmetry property (1), we get
dW, d d
_C:yTEl_y TrTApCpALT ay
dt dt dt

d
— 4 E\PE' (Ay + Fp(Py) + s(t)) —y 7' ApCpAlm d’;.
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 17

From the definition of s, and of Fp, equations and (33), we have
Ly ADCDADT‘-E = sp + Fp(Py).
Moreover, recalling , we have
E\PE; ' Fp(Py) = E\(P + Q)E,'Fp(Py) = Fp(Py).

Then we get

dWe

=Y EPET (Aiy+s(t) —y'sp.

Recalling and (30), we recognize that
yTsD = yTTrTSDJD = ugJD.

In conclusion, we find

dWe
di

=y E,PET" (Ayy +s(t)) —u)Jp. (1)

The total energy of the coupled system

For the total energy of the system W = W + W we obtain

dW J? J?
dt i qlipp Q n;

+ Z Vui(es0, V) - vido +y  EyPE' (A1y + s(t)).

FDz

An alternative definition for the total energy where no boundary terms appear in the total energy
balance equation can be given using the steady-state solution (n®, p®, 1)°) defined via (2) and (3). We
consider a shifted local energy wi,:

n €5
wy, = qUT{n(log§ — 1) + n® +p<log]% — 1) —I—pe} + §|V(¢ — %7, (22)
whose time derivative is

atwg = 8th - qUT IOg Z—atn — qUT log %atp _ Esv¢e . atvw

dwp — q°Om + P°0ip + Y°V - (6,0, V) — V - (¥°€,0, V1))
= Owp +YP°0(—qn+qp+ V - (,VY)) — V - (¢°e50, V)
= 8,511)[) - V- (weESGtvw).

Defining the shifted total energy associated to the device as

Wi —/w}dx
Q
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we get

mp

dWy  dW aw
" e D / V- (1,0, Vep)dx = —2 Z Uui(€50, V) - vdx.

FDZ

Then, the shifted total energy W* = W}, + W satisfies

dw* g, J,
_ / (_n 4+ >dx — / qUrRlog n—f dx +y' E\PE;" (Ajy +s(t)).
dt qHnn  qppD Q n

We introduce the following notation: for any function f(n,p, 1, y) we write f¢ = f(n®, p®, 1°, y°),
where y°® = 0.

For any o > 0, we define the Liapunov functional
n+ o
Ha /qUT n—l—a)(log 1) —I—ne}dx
+«

pta e E A e)]|2
+/QqUT{(p+a)<logpe+a—1)+p }dX+/Q 2!V(1/J Y®)|%dx + We.

The parameter «v is needed to ensure that H,, is well defined, since n and p may vanish locally.
Formally, as « tends to zero, the Liapunov functional ., tends to the total physical energy W* of the
coupled system. This assertion can be stated in a precise way by observing that the function

(23)

zlog 2z if z>0

9(2) = {0 itz =0 @4)

is continuous for z € [0, 00). Then the functional H = lim,_,o H,, is well defined, and we have
H = W*. We define the following functions 1,,(x, t), 1, (X, t), 15 (x) and 1> (x):

o= Urlog™ % 4, =+ Uplog %, 25)
U8 = — Urlog =12 U = v + Uplog 12 (26)
Lemma 1 For the functional H, defined in (23), we have
Holt) = Hal0)+ [ [ (T V0= 2) 4 90, — ) axar
(27)

+a)(p+ '
/ / aUrRlog o (n O‘;Eiefg) dxdr + / y E\PE;' (Ayy + s(1)) dr.
0

Proof. First we compute the time derivative of the functional H,, which, for any solution of the full
problem, is a function of time only and its time derivative is

dH,. n—+« o
S (1 B )d
dt /QqT Ogn +« atp x

e;V( —¢°) -, Vydx +y E\PE;" (Aiy + s(t)) —updp
0

D+
on +lo
t gpe—{—

nT o . p o (28)
/UT(log V J, —log V J )
(n+a)(p+a) e
_ 1 _ )
/QqUTR og (n® e )dx + QESV(zﬂ YP®) - 0, Vipdx

+y E\PE;' (Aiy + s(t)) —upJdp,
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in which we have used the model equations in ().

We integrate by parts the first term on the right-hand side of (28), and using the definitions and
(26) we obtain:

n+ o p+ o
1 -J, =1 vV-J,|d
/QUT(ogne+ V-J og o p> X

o pe

= [ V= )+ 1, V= ) ox— [ (e 3,) V- o) ox

Inserting this in we get

dH, . )
dt /Q (J" V(W =)+ Ty, - V(¢ — wp)) dx
(n+a)(p+a)
_ /QqUTRIOg (ne T a)(pe i a>dX 29

_ / (—ead VW + T+ J,) - V(b — ) dx
Q
+ yTElPEl_l (Al’y + S(t)) — U’EJD

Integrating by parts the last integral and using and the definition of J p, we obtain

dHa e
o= [ (T L T, - ) ) ox
; (n+a)(p+ a) (30)
— [ qUrRlo dx+y' E,PE;' (Ay+s(t)).
| vnrios S g BVPE (Avy + s(0)
Integrating on time, we get the thesis. [ |
3.3 A priori estimates
In the following lemmas we prove the a priori bounds for the solution.
Lemma 2 Assume that the recombination is of the type
B(n,p) = r(n.p) (np —n?), with 0 < r(n,p)(1+ |n| + |pl) <7 @)

were T is a constant, and the mobilities are bounded. Then there exist constants C', C'y independent
of t such that for any solution n, p of the system it holds that

In( Ol + IOl + IEC, Bl + [y < Cre™, ¢ > 0. (32)

Proof. We estimate all the terms on the right-hand side of (27). We start observing that, thanks to
(25), we have n = n; exp (%—f”) — «, which leads to

@D - ¢n>
Ur
Then, the electron current can be written as

Jn = q,un(UTvn - nvd)) = qun((n + Oé)V(l/} - wn) - nvd’)
= Q/’l/n(_(n + a)vwn + OzV@M»

1 n+ o
U_TV(¢ - 77bn) = UT

Vn = n;exp < V() — ).
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and for the first term on the right-hand side of we find
[0V = vy dx = [ 0+ @)Ven + aVe) - Vi, - v3) dx
Q Q
= [ amn (= (- Q)T+ (04 )V VU2 + QT (T, - T62)) e
Q
< / atin (= (0 + @Vl + (0 + @) [ V5| [V5] + @l VO (V| + [V55]) ) dx
Q
< [ an(n+ VUL + —[T0P) dx < 1+ [Inl + []3)
= Qq/un n Q ,lvbn (n+a) X>cC ny 2)-
In a similar way, we can estimate

/Q Ty V(W —08) dx < c(1+ plls + [0]2).

For the recombination term, we have

(n+a)p+a)
/QqUTR(n,p) log (" T )" ) dx
(n+a)(p+a) dxc

(n® 4+ a)(p® + )

— /QqUTr(n,p) <np — n?) log

Observing that n°p® = n?, we have the identity:
np—n = (n+a)(p+a)— (0 + )" +a) —a(n+p—n°—p°), (34)

which leads to

(n+a)(p+a)
- Rl ey o

(n+a)(p+ «)

- qUT/QT<(n Ta)lpta) = +a)(p"+ Oé>> o (n® + @) (p° + a) -
+ qUr /Q ar(n+p—n® —p°)log (5:: i Zigej:_a(i) dx
(n+a)(p+a)

<qUr /Q ar(n +p —n°—p°)log (n° +a)(p° + Q)
(n+a)(p+ )

Sc/g (° + @) (7" + )

<c(I+[Infl + llpll)-

rlog In+p+n®+p°ldx

The last inequality follows from the hypothesis on r(n, p) (37), and from the inequality

(1
< max | —,
e

Finally, for the last term, recalling (Tb), we have immediately

log(z + a)
z+a

log a

), Vz>0,a > 0.

a

y' E\PE;" (Awy +s(t) < c(1+ |y]?).
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Combining the previous estimates, we get

t
Halt) Scrten [ (L4 Il o+ ol + V13 + lyf)as. )
0

The thesis follows after noting that

Ha(t) = (14 nlly + Ipll, + 963 + )

with the help of Gronwall’s lemma. [ |

Lemma 3 Under the same hypothesis of Lemma@ there exists a constant ¢ = ¢(T") such that for all
t <'T we have

t
InC 015 + (D)l +/ (1906, )13+ 190(-, )3 or < c. (36)
0
Proof. We consider the weak formulation with &, = n — n® and integrate with respect to time
1 t
5 (I =13 = InC.0) = n¥1B) + D [ [ (90— ) Ptz
0 Jo
t t t
= —Dn/ / Vn® - V(n — n®)dzdr + / (unV, V(n — n®))dr — / (R,n — n®)dr.
0 Jo 0

0
We have the estimate

t 1 [t
= [ [tV —wasor < 5 [ (19at. )3+ [Va3)or
0 JQ 2 Jo

Furthermore, integrating by parts and using the Poisson equation, we obtain

t
//nvw-V(n—ne)dxdT
0 JQ
= //n—n WV - V) (n —n®) dxdT—// n°E - V(n —n®)dzdr
L[ [e=n+n >dxdr+/(||E||2+ IV (n 7)) or
t
<o [ [ —ndxdw/cueuzdw =)o

< D) {1+l + oI} + 2p—m)gagr+ 2 [ 900 =)o

<

We have used the result in Lemma!to estimate all linear terms in n and p and the L*-norm of E. For
the recombination generation term whose form is in (6) and for which we have assumed we have

(R, n —nf)| < /Q |r(n,p)(np — nf)(n — n®)dz| < ¢ (1+ [[n]z + [Ipll2)

Finally, we get the estimate

\|n<>—nu2+—//wn_n 2dudr
<ory {1 [ Qi+ iy + L [ [ oo oaar
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which leads to

ol [ 19l or < et {1+ [l + 10i3) or b +eo [ [ (o~ n)avor

for some positive constant c,,. Similarly for p we have

i3+ [ 190l ar < e {1+ [ g+ 1o12) ok e, [ [ 50— myaser

for some positive constant ¢,. Summing up we get

t
||n(7f)||§+||p(1f)||§+/0 (Ivnlz + 1Vel3) dr

<o) {1+ [l + i) or b+ { [ [ o myasor
<or) {1+ [ (lnll + Io13) or

in which we applied (n? — p?)(p —n) = —(n + p)(n — p)* < 0. Using Gronwall’'s lemma, we get
the thesis. m

Combining the results in the previous Lemmas we have

Lemma 4 There exists a constant c = ¢(T') such that for allt < T we have
t
2 2 2 2
I8 + I + o + [ (IVn I+ 19067 B)ar <e. @
0

The main result of this paper is the following global existence and uniqueness theorem.

Theorem 2 [Global existence and uniqueness] Let the source functions i;(t) and vy (t) be continu-
ous, let the network matrices be symmetric, positive definite and the topological conditions and
be fulfilled, and let diffusivities and mobilities be constant. Then problem (2)-({) admits a unique
solution on the time interval [0, T| for any T € (0, c0).

Proof. The local solution proved in Theorem|[f]can be prolonged using the results in Lemmas|[2] [3|and
Z) n

4 Asymptotic behaviour of the solution

In this section, we study the asymptotic behaviour of the solution to (1) as ¢ tends to infinity. For a single
device without coupling with an electric circuit, it is known that all solutions relax to equilibrium [26]
if the applied potential vanishes. Therefore, in the coupled system, we need to demand appropriate
topological conditions on the electric network to enable such a result. We derive sufficient conditions
on the network topology during the development of this section.
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Theorem 3 (Asymptotic behaviour of the solution) Under the assumption of Theorem (3, let the
network system satisfy the additional topological conditions

ker A, C ker AL C ker A; . 1)

Moreover let the sources satisfy the decaying conditions

t—o00

t
lim [s(t)]* = 0, / |s(7)|?dr < K forallt > 0. )
0

Then as time tends to infinity, the solution of the problem (1) approaches the equilibrium states mean-
ing that there exists 7, € ker Az C R™t such that

n—n®, p—p° in L',
b = P°, in H', (3)
w—0, 4y —0, 4,— 4y inEuclidean norm.
Proof. The proof follows along the line of Gajewski’s analogous result in [26], modified to take into
account the coupling of the device with the circuit.

Summing and subtracting the term qu,(n + a)V2 in the definition of the current densities J,,
rewritten as in (33), we get

Jn - —C]Mn(n + Q)V(¢n - ¢$L> - q,un(n + O‘)vwe + Q/lnav@b
= —qun(n+ @)V (W — U2 + quna Vb — qpina— ra vwe

= —qun(n+ )V (¥, — Y2) — quna We + qunaVW V°),

+
in which we have used that from we find Vi, = —2-V¢)® and Vi§ = em V)°. Similarly, for
J, we get
B e P s e e
Jy = —qup(p+ )V, —5) — AU o VYt qupaV (Y — 9°).

Then we find, for arbitrary time t; > t5 > 0,

/t:l/QJn-V(@bn—%Z’Z)dXdT:—/t:l/gqun(n—{—aﬂvwn_¢z)‘2dxd7
/ [ { T ) = S| Vi axar

< ——/ / i+ )| (1, — v2) [ dx dr

+q&/ /un E°(n—n°) [’

n® + «
In a similar way we get

t1 t1
[ [ 30w —uaxar <=4 [ [ o+ Vi, - vp)Paxar
to Q
t1 e e 2
+qa/ /@ E—Ee——E(f P)
to Q 2 b +OZ
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E - E°— dx dr.

(5)
dxdr.
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d’
Using (4) and (B) in Lemma[i} considering the definition (€) and (34), for arbitrary time ¢; > ¢, > 0,
we can write

Halt) 5 [ [ -+ )9 = 020 +sylp + )|V, = ) dcar

(n+a)(p+a)
(n® 4+ a)(p® + )

+q/tol/QUTr[(n+oz)(p+a) — (n® + a)(p° + a)] log i

t1

< Mo (to) + / y E\PE;" (Ajy + s) dr ©)

to

t1
Hn
+aq/ / —
to Q[Q

+Urr(n+p—n® —p°)log

2

_E(n—n°)

nt 4+«

E(p — %)
P ta

2
E-_E° + L

2

(n+a)p+a)
(n® + @) (p® + @)

E—E°—

} dxdr.

The last integral term in (6) is bounded, so we can pass to the limit for « — 0 and find
t1
q e e
Hie) + 2 [ [ (nlV060 = 6P + il V6, — 6 axar
to Q
t1
< H(to) + / yTElPEl_l (Aly + 8) dr

to

where ¢,,, ¢5,, ¢, and ¢ are the physical quasi-Fermi levels which means

n
Gn=1-Urlog—,  ¢,=1+Urlog ®
e e ne e e pe
(bn:w —UTlOg;, pr:Q/J +UT10g;7 9)

and
H(t) = / qUr [n <1og£e _ 1) +n°+p (log% . 1) +pe] dx
Q n P
1 1
+ / SIE - EPdx + su' AcCALu + i} Li, (10)
Q 2 2 2
1 1
= H'(t) + Ju' () AcCALu(t) + i (1) Lir(t).

Using Definition 1, and the definitions of y, z, /1 and A, we can write

y' E\PE;" (Aiy + )
=y Ei(P+Q)ET" (Aiy+5) —y E\QET (Aiy +5)
=y (Aiy+s) -y Eiz=y (Ay+s)+y' Az
On the other hand, we have
—2"Az=2"E\z=2"E\QE;' (Ay + s)
—2'E\(P+Q)E['(Ay+s)—z E,PE"(Ay+s)
=z (Aiy+s)—z Ewy==z' (Ay+s),
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since Q' E,P = Q' (E — AQ)P = O. Summing up, we obtain the identity

y' E\PE;' (Ajy+s)=(y+2) [Aly+2) + 5]

= —’U,TARGA;’UJ + ’I:;’UV + UTA]i[.

Next, recalling the definition of ¥y and z, we write

Yy Pq-pu z Q-pu
y=|y"| = ir , z=1|0]:= 0
0 0 z" ’iv

The condition ker A; C ker Ag, and the positive-definiteness of G, imply
u' ARG Aju > cq|Prul? > co|Poul? = coly).
Also, we have
ivvy +u' Arip =y " Apip+ 2T Arip + zg vy < |y/||s| + |2]]s].
Recalling once more the expression of z in terms of y, we find
2=QE;' (Aiy+s)=E, ' Q  (Aiy+s).

Using the condition ker Ag C ker AI, we can compute explicitely

—QEDARGAE
QTAly = O PEDu = Mly/>
AT
v
which implies
2| < c(ly'| + |s]). (11)

In conclusion, we find

y E\PE" (Aiy+s) < —cly' >+ [ylIs|+c(|y]| +|s])|s]
< CG | 112 2
> _7|y‘ +C’S‘ ) (12)

in which we have used the weighted Schwarz’s inequality. Inserting in (7), we obtain
t1
q e
Ht)+ 2 [ [ (unl V(0 — 6P + bV (6, — ) dxar
to Q
ca t1 t1
+ = [y |2 dr < H(to) + c/ |s(7)[* dr.

2 to to

which implies for all t; > to > 0 that

t1 to
H(ty) — c/ |s(7)|>dT < H(tg) — c/ |s(7)|?dr, (14)
0 0

and, using (2), that
t1
e+ 5 [ [ (i 0n = P + I (0, - 6)F) dxar
0

t1
—1—%; ly'|?dr < H(0) + cK.
0
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This means that there exists a sequence ¢; — 00 such that

lim {/ (n\V¢n|2 —|—p\V¢p\2) dx} = 0. (16)
Q

Jj—oo _
t=t;

vnl|?

We show that yields a bound on the norm of Vy/n and V/p, thanks to the identity
\Y

—E— UT— +p ‘—E + Up—

p

2
/ (n|Von|* + p|V,|?) dx :/ ( b ) dx
Q@ @ (17)

:/Q((n+p)]E]2+2UTE'V(n_p)+4U% <|V\/ﬁ}2+‘vx/13’2>) dx

Rearranging the terms in (17), we find, for t = ¢;,

AU (YAl + IV/BI2) + / (n+ p) EP dx

— / (n|Vn|* + p|V,|*) dx — / 2UrE-V(n —p)dx <c, (18)
Q 0

since, integrating by parts, considering the boundary conditions (Tg)-(Ti) and the Poisson equation for
the electrostatic potential, we have

~[EVa-pex=-L [@-p-C)n-pax+ [ n-pT0-vdo

€s Q I'p

_ C(n—p)dx—g/(n—p)de—i-/ (n—p)Vi-vdo
Es 0 € I'p
q 1
<5 NIl - Hn PP+ 55 | |nD—pD\2do—+5HwHi2m)
<2y 45/ o ol

Here, we have used IVl BQ < c|[¥)l32 < c(||C]1* + ||n — pl|*), and chosen § small enough,
so that cd < ;%-. Then from (15) we can write

(t)l2 <c (19)

Following [26], we use the compactness of the embeddings of W into Log with g < f < 3 and
LQW(GQ) with 1 < v < 2, we can suppose that there are two functions 7 and p belonging to Lg and
L. (09) such that /71, \/p € W and

lim n(t;) =n, lim p(t;) =p in Lz and L,(09). (20)

Jj—o0 Jj—00

Next, we prove the convergence of y and z. Using (15), we can write
1 1 !

—u' (t)AcC AL u(t) + 57:}(t)LiL(1t) + %G / ly'|?dr < H(0) + cK. (21)
0

Since C'is positive definite, and 3y’ does not belong to the nullspace of A ., we have uTACCACu >
cc|y'|?, which yields

t
ClyP o+ [ WP <o)+ ok
0
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Gronwal’s lemma implies that y'(t) — 0, with asymptotic decay as ¢ — oo. Then, estimate
implies that z(t) — 0 as t — oo. In particular, we have shown that u = y’ + 2’ tends to zero, that
is,
lim u(t;) = 0. (22)
J—00
Finally, implies the boundedness of y” = 71, due to the positive definiteness of L, which implies
the convergence of 1, (t) — ..

From and it follows that

lim () =v=Lp-n+C) in W;, (23)

j—00

and, since Wg C C, also that

lim n(t;) exp (—w(tj)) = e YU lim p(t;) exp (w

j—o0 UT j—o0

Moreover, recalling , we have the identities
7 exp —i = n; exp —ﬁ , pexp i = n,; exp ﬁ ,
Ur Ur Ur Ur

V(ne ¥/Ur) = _Uiefw/UTv% V(pe¥/Ur) = Uﬂew/UTv%_
T T

which imply

Then, using and (20), it is possible to show that fie=?/Ur and pe’/Ur are constant, and from the
boundary conditions and (Th), written with up = 0, because of (22), we find

77L€—1/;/UT — nDe—wD/UT =n;, ]561/7/UT _ pDewD/UT = n;.

This shows that

n= niewUT, D= nie’wUT,

and, thanks to (23), @/_) satisfies the defining equations for the equilibrium potential, with the same
boundary conditions, thus

b=y° a=n°, p=p° (24)
In particular, this implies that the limit current from the device to the circuit becomes zero as ¢ goes to

infinity. Thus, from the cicuit equations (1), recalling that y and z tend to zero as time increases, the
limit value %7, for y” = 1, satisfies the condition AI 12; = 0, thatis, 11, € ker AI.

We can finally pass from the sequence {tj} to the continuous limit for ¢ — oo, by recalling that the
function H(t) — ¢ [ |s(r)|? is decreasing, as shown in (). Then, we have

i Lo —c [l = i {auce) - ["hstol ) = et [ st

which yields
lim #H(t) = 0. (25)
t—o0

The estimates (3) follow as in [26]. (]

"Multi-dimensional Modeling and Simulation of electrically pumped semiconductor-based Emitters".
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