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Existence and uniqueness of solution for multidimensional
parabolic PDAEs arising in semiconductor modeling

Giuseppe Alì, Nella Rotundo

Abstract

This paper concerns with a compact network model combined with distributed models for
semiconductor devices. For linear RLC networks containing distributed semiconductor devices,
we construct a mathematical model that joins the differential-algebraic initial value problem for the
electric circuit with multi-dimensional parabolic-elliptic boundary value problems for the devices.
We prove an existence and uniqueness result, and the asymptotic behavior of this mixed initial
boundary value problem of partial differential-algebraic equations.

1 Introduction

The main ingredient used in circuit simulation is the lumped network equations for the simulation of
the network designs. The application of the Modified Nodal Analysis (MNA) formalism yields a system
of differential-algebraic equations (DAEs), that can be classified using the index concept [1]. The
index determines the number of inherent derivatives that are needed to derive the ordinary differential
equation. Different index cases can only be distinguished by structural means for the classical MNA
equations. Using for instance the tractability index [2], one decomposes the set of variables accordingly
and projects parts of the equations.

The transition from microelectronics to nano-electronics requires a more systematic study of the
coupling effects. These effects are particularly relevant in integrated circuit modeling, and their rel-
evance increases with the decreasing of the scales. Relevant examples are, e.g., electrothermal cou-
pling [3–5], electromagnetic coupling [6,7], or electric network-device coupling [8–10].

In the modeling of the coupling effects there is a basic set of “lumped” differential-algebraic equations,
generally the electric network equations, and a set of “distributed” partial differential equations, which
model phenomena which arise at a different, finer scale. The coupling involves an interplay between in-
tegrated quantities coming from the distributed model, which enter the lumped equations, and lumped
variables which are related to boundary data for the distributed equations. This leads directly to cou-
pled systems of differential-algebraic equations (DAEs) for the electric network and partial differential
equations (PDEs) for the semiconductor devices. The coupling has two parts. On the one hand, an
additional source term occurs in the current balance of the electric network. On the other hand, the
boundary conditions of the device equations depend on the time-dependent node potentials, which
are genuine unknowns of the electric network.

In this paper, we focus on the electric network-device coupling. We consider an electric network which
contains semiconductor devices, modeled by multi-dimensional, parabolic, drift-diffusion equations.

The coupling of the drift-diffusion model with the electric network equations have been extensively
studied. The well-posedness of the resulting coupled system has been investigated for the steady-
state (elliptic) one-dimensional case in [3, 8] and in the index-1 and index-2 multidimensional case
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respectively in [11] and [12]. The uniqueness for data close to equilibrium in the steady-state (elliptic)
one-dimensional case is proved in [13]. In [14] is given a systematical approach for the decomposition
in case of index grater than 2.

Other fundamental works in the direction of the study of coupled model within the framework of abstract
differential-algebraic equations are [2, 15, 16]. The more recent publication [17] summarizes the state
of the art of such coupled models in the simulation of electric circuits.

The present paper is strongly related to [9], where the authors prove existence and uniqueness result
for the time-dependent (parabolic–elliptic) one-dimensional case. We establish existence and unique-
ness of solution for an index-1 parabolic partial differential-algebraic equation.

The work is organized as follows. Section 2 covers the modeling of the coupled system; both sub-
systems are described in detail and the coupling terms are defined. In Section 3 we state the main
result. First, we prove the local existence and uniqueness of solution and then using some a priori
estimates we extend the solution globally. Section 4. concerns with the asymptotic behaviour of the
solution when time tends to infinity.

2 Coupled circuit-device model

We consider electric networks which include some components described by distributed equations.
The specific application we have in mind is a model for an integrated circuit with semiconductor de-
vices. Nevertheless, this model is susceptible of different generalizations and extensions.

In this section we present the general coupled model, postponing to a later section the clarification of
the needed mathematical assumptions.

An electric network is described by the electrical potentials at the nodes and by the currents through
the branches. Using the approach of Modified Nodal Analysis (MNA) [18, 19], the electric network
equations can be obtained by the Kirchhoff current law, replacing the constitutive equations for the
currents through branches with capacitors and resistances, and by the constitutive equations for the
remaining components.

2.1 Network models for electric circuits.

We consider a linear RLC network, that is, a network which connects nC linear capacitors, nL induc-
tors and nR resistors, and nI independent voltage and nV current sources. We assume that the net-
work connects also semiconductor devices connected with circuit by Ohmic contacts. We assume that
the network hasm nodes plus the ground node, where the potential is zero. We denote byu(t) ∈ Rm

the node potentials, by iL(t) ∈ RnL the currents through inductors, by iV (t) ∈ RnV the currents
through voltage sources, by vV (t) ∈ RnV the independent voltage sources, and by iI(t) ∈ Rni the
independent current sources. The MNA system of equations can be written as

ACCA
>
C

d
dt
u+ARGA

>
Ru+ALiL +AV iV + `D(x) = AIiI(t), (1a)

L
d
dt
iL −A>Lu = O, (1b)

−A>Vu = vV (t), (1c)
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 3

or in a compact form

M
dx
dt

+Nx+ sD(x) = s(t). (2)

which is a differential-algebraic equation for the unknown

x =

uiL
iV

 ∈ Rno , no = m+ nL + nV .

The matrices in (2) are given by

M =

ACCA
>
C O O

O L O
O O O

, N =

ARGA
>
R AL AV

−A>L O O
−A>V O O

, s(t) =

AIiI(t)
O
vV (t)

.
Here, AC ∈ Rm×nC , AR ∈ Rm×nR , AL ∈ Rm×nL , AV ∈ Rm×nV , AI ∈ Rm×nI , are incidence
matrices, which describe the topology of the network. Moreover C ∈ RnC×nC , G ∈ RnG×nG and
L ∈ RnL×nL denote the capacitance matrix, the conductance matrix and the inductance matrix,
respectively, which are regular.

The term sD(x) in (2) represents the coupling with semiconductor devices and it will be described in
details later on. It is related to the equation (1a) through the relation

sD(x) = π>`D(πx),

where π =
[
I O O

]
∈ Rm×no is a projection matrix which selects the first block of the circuit

unknown x, so that u = πx.

We supplement equation (2) with consistent initial data

x(t0) = x0, (3)

this consistency will be discussed in the next section.

2.2 The d-dimensional diode model.

For simplicity we consider a network containing only one semiconductor device. The case of circuits
with many devices can be dealt using the same arguments, but the notation would be much heavier.
We consider a semiconductor device with mD + 1 terminals. The device can be modeled by means
of a domain Ω ⊂ Rd, characterized by a doping profile C(x), with x ∈ Ω. For the derivation of
the model we refer to the classical literature such as [20] or more recent [21]. We neglect all thermal
effects, and assume that two carriers are responsible for the diodeÕs output current, that is, electrons
with negative charge −q, and holes with positive charge q. The behavior of the device is described
in terms of number densities of electrons and holes, denoted by n(x, t), p(x, t), current densities for
electrons and holes, denoted by Jn(x, t),Jp(x, t), and electrostatic potential, denoted by ψ(x, t),
t ∈ [0, T ]. These variables satisfy the following drift-diffusion system

−∇ · (εs∇ψ) = q (p− n+ C) , (4a)

−q∂tn+∇ · Jn = qR, (4b)

q∂tp+∇ · Jp = −qR, (4c)
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for x ∈ Ω and t ∈ [0, T ]. In (4) the dielectric permittivity εs = ε0εr is given as the product of the
vacuum dielectric permittivity ε0 and the relative permittivity of the semiconductor material εr. The
current densities in (4b) and (4c) are given by the usual expressions

Jn = q(Dn∇n− µnn∇ψ) and Jp = −q(Dp∇p+ µpp∇ψ). (4d)

In (4d), Dn and Dp are the diffusion coefficients related to the mobilities µn and µp of electrons and
holes by the Einstein’s relations

Dn = UTµn, Dp = UTµp, (5)

where UT is the thermal voltage given by UT = kBθ/q, in which kB indicates the Boltzmann constant
and θ is the globally constant temperature for both carrier species and the crystal lattice. The net
recombination rateR(n, p) on the right-hand side of equations (4b) and (4c) describes the generation
or recombination of carriers due to various scattering effects. Considering Boltzmann statistics, the
recombination rate has the form

R(n, p) = r(n, p)(np− n2
i ), (6)

where ni is the constant intrinsic concentration. We assume that r(n, p) is a regular function, with
r(n, p) > 0 for all n, p, and such that R(n, p) is Lipschitz continuous, which means for different
electron and hole densities n1, n2 and p1, p2 respectively, we have

|R(n1, p1)−R(n2, p2)| ≤ LR(|n1 − n2|+ |p1 − p2|), (7)

with Lipschitz constant LR. The Shockley-Read-Hall recombination mechanism for example satisfies
this property.

We supplement the system (4) with the initial conditions at time t = 0

n(x, 0) = n0(x), p(x, 0) = p0(x) for x ∈ Ω. (8)

Concerning the boundary conditions, since we consider a semiconductor device containing mD + 1
terminals we have thatthe boundary ∂Ω of the domain Ω containsmD+1 open, disconnected subsets
ΓD,i, i = 0, 1, . . . ,mD, representing the terminals of the device

∂Ω = ΓD ∩ ΓN , ΓD =

mD⋃
i=0

ΓD,i, ΓN = ∂Ω \ ΓD. (9)

On ΓD we assume Dirichlet boundary conditions, that is

n(x, t) = nD(x), p(x, t) = pD(x), x ∈ ΓD (10a)

ψ(x, t) = ψbi(x) + uD,i(t), x ∈ ΓD,i, i = 0, 1, . . .mD (10b)

where

nD =
C

2
+

√(
C

2

)2

+ n2
i , pD = −C

2
+

√(
C

2

)2

+ n2
i

and
ψbi = UT ln

nD
ni

The external potentials uD,i, i = 0, . . .mD coincide with the electric potentials at the nodes of the
network which correspond to the terminals. They represent the coupling with the circuit, and will be de-
scribed later. On the remaining boundaries one typically imposes homogeneous Neumann boundary
conditions, namely

∇ψ(x, t) · ν = Jn(x, t) · ν = Jp(x, t) · ν = 0, x ∈ ΓN , t ∈ [0, T ]. (10c)

In (10c), ν denotes the outer normal vector on the boundary.
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 5

2.3 Coupling conditions

In this section we explain the coupling conditions between the network and the device. We describe in
details the term sD(x) in (2) and its relation with the external potentials uD,i, i = 0, . . .mD in (10b).

We start defining the total electric current through the Dirichlet terminals. Taking the time derivative of
the Poisson equation (4a) and using the continuity equations (4b) and (4c), we obtain

∇ · (−εs∂t∇ψ + Jn + Jp) = 0. (11)

Integrating the above identity on Ω and using Gauss’s divergence theorem, recalling the Neumann’s
boundary conditions (10c), we get

mD∑
i=0

∫
ΓD,i

(−εs∂t∇ψ + Jn + Jp) · νi dσ = 0. (12)

We identify the total current through ΓD,i with

JD,i := −
∫

ΓD,i

(−εs∂t∇ψ + Jn + Jp) · νi dσ, i = 0, 1, . . . ,mD, (13)

which is the sum of the so-called displacement current – that is, the time derivative of the electric field
– with the currents due to carriers. We note that, by construction, the currents satisfy the identity

mD∑
i=0

JD,i = 0. (14)

Next, we need to define in a proper way the electric currents flowing through the Ohmic contacts,
which will be used for the coupling to the circuit. At this aim, we introduce the auxiliary functions wi,
i = 0, 1, . . . ,mD, defined by the following elliptic boundary value problem:

−∇ · (εs∇wi) = 0, in Ω,

wi = δij, on ΓD,j, j = 0, 1, . . . ,mD,

∂wi
∂ν

= 0, on ΓN ,

(15)

where δij is Kronecker’s delta (δij = 1 if i = j, δij = 0 if i 6= j).

Then, it is convenient to define the electric current JD,i flowing through the i-th Ohmic contact ΓD,i by
the volume integral

JD,i(t) = −
∫

Ω

∇wi · (−εs∂t∇ψ + Jn + Jp) dx. (16)

For later use, we decompose the electric potential by means of the auxiliary functionswi. We introduce
the stationary part ψ∗ of the electric potential, defined as the solution of the problem

−∇ · (εs∇ψ∗) = qC, in Ω,

ψ∗ = ψbi, on ΓD,

ν · ∇ψ∗ = 0, on ΓN .

(17)

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019



G. Alì, N. Rotundo 6

We define the linear functional L(ρ), which to the function ρ associates the function ϕ ≡ L(ρ),
solution of the problem: 

−∇ · (εs∇ϕ) = ρ, in Ω,

ϕ = 0, on ΓD,

ν · ∇ϕ = 0, on ΓN .

Then we can write the electrostatic potential as

ψ = ψ∗ +

mD∑
i=0

wiuD,i + L(qp− qn).

Using this decomposition, the electric current JD,i becomes

JD,i =

mD∑
j=0

CD,ij
duD,j

dt
+ JD,i(Jn + Jp), i = 0, 1, . . . ,mD, (18)

where

CD,ij =

∫
Ω

εs∇wi · ∇wjdx, i, j = 0, 1, . . . ,mD, (19)

and we have introduced the functional JD,i which to any vector function J(x) associates

JD,i(J) = −
∫

Ω

∇wi · (εs∇L(∇ · J) + J) dx i = 0, 1, . . . ,mD. (20)

To write (18) in compact form, we introduce the vectors

JD =


JD,0
JD,1

...
JD,mD

 , uD =


uD,0
uD,1

...
uD,mD

 , J D =


JD,0
JD,1

...
JD,mD

 ,
and the matrix ĈD = (CD,ij)i,j=0,1,...,mD

∈ R(mD+1)×(mD+1). Then, we can write

JD = ĈD
duD

dt
+ J D(Jn + Jp). (21)

The currents through the interfaces are not independent, due to (14), which implies

JD,0 = −
mD∑
i=1

JD,i.

Moreover, it is possible to prove that

mD∑
j=0

CD,ij = 0, i = 0, 1, . . . ,mD. (22)

It is convenient to introduce the vectors

ID =

 JD,1
...

JD,mD

 , vD =

 uD,1 − uD,0
...

uD,mD
− uD,0

 , ID =

 JD,1...
JD,mD

 , (23)
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 7

and the matricesCD = (CD,ij)i,j=1,...,mD
∈ RmD×mD and

ÂD =


−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
Then we can write

JD = ÂDID, vD = Â
>
DuD, (24)

and (21) can be replaced by

ID = CD
dvD
dt

+ ID(Jn + Jp). (25)

In particular, combining (24) and (25), and comparing with (21), we have the identity ĈD = ÂDCDÂ
>
D.

Circuit-to-device coupling conditions

To relate the potentials uD, applied at the mD + 1 contacts of the device, with the network potentials
u, we need to introduce a contact-to-node incidence matrix, which relates the device’s contacts to the
network nodes, selecting the node which corresponds to each contact. For this reason, we will call this
matrix selection matrix, and denote it by SD = (sD,ij) ∈ Rm×(mD+1). The sifting matrix is defined
by:

sD,ij =

{
1, if the contact j is connected to the node i,
0, otherwise.

(26)

By virtue of this definition, we can write

uD = S>Du. (27)

The components u are the first block of the circuit unknown x so that using the projection matrix π
defined in Sec.2.1, we can also write

uD = S>Dπx. (28)

We refer to relation (28) as the circuit-to-device coupling condition, that can be also written using the
voltage drop vD defined in (23):

vD = A>Dπx, (29)

withAD = SDÂD.

Device-to-circuit coupling conditions

Using the selection matrix SD and the projection matrix π, we can express the term sD appearing in
(2) as:

sD = π>SDJD = π>ADID, (30)

which also means `D = SDJD = ADID. Using the representation (25), we get

sD = π>ADCDA
>
Dπ

dx

dt
+ π>ADID(Jn + Jp). (31)

We refer to this relation as the device-to-circuit coupling condition. The term ID(Jn + Jp) depends
only on the voltage drops vD = A>Dπx, so we will write ID(A>Dπx) to make this dependence
explicit.
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2.4 Circuit unknowns decomposition and topological conditions

The circuit equations (2) can be written in the form

E
dx
dt

= Ax+ FD(x) + s(t), (32)

where

E = M + π>ADCDA
>
Dπ,

A = −N ,

FD(x) = −π>ADID(A>Dπx).

(33)

Using a well-established procedure [22], we decompose the circuit’s unknowns into a differential com-
ponent and an algebraic component. Due to the special structure of the system, it is sufficient to
impose index-1 topological conditions. To do so, first we write the system in the equivalent form:

E1

(
P

dy
dt

+Qz

)
= A1y + FD(Py +Qz) + s(t), (34)

where y = Px, z = Qx, withQ projector onto ker(E), P = I −Q the complementary projector
ofQ, and

E1 = E −AQ, A1 = AP . (35)

We have explicitly

Q =

QCD O O
O O O
O O I

 , QCD projector onto ker
[
AC AD

]>
. (36)

Then the index-1 conditions should ensure that E1 is invertible and FD depends only on y. If this is
the case, we can decompose (34) as follows:

dy
dt

= PE−1
1 (A1y + FD(Py) + s(t)) , (37)

z = QE−1
1 (A1y + FD(Py) + s(t)) . (38)

We can see that the first equation is decoupled from the second equation and can be solved for y.

For our system, the index-1 conditions are [22,23]:

ker(AD,AC ,AR,AV )> = {0}, (39)

kerQ>CDAV = {0}. (40)

These conditions ensure also that FD depends only on y, since we have

FD(Py +Qz) = −π>ADID(A>Dπ(Py +Qz)),

andA>DπQ =
[
A>DQCD O O

]
= O by construction.

We also have
QE−1

1 = Ē
−1
1 Q

>, Ē1 = E −Q>AQ, (41)

which impliesQE−1
1 π

>AD = 0, and thus

QE−1
1 FD(Py) = 0. (42)
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 9

In turns, this yields a simplification of the decomposition (38), that is,

z = QE−1
1 (A1y + s(t)) . (43)

Finally, we discuss the consistency of the initial data (3). From the above discussion, we see that we
can only supplement the (32) with the initial data

y(t0) = y0 = Px0. (44)

Then the algebraic part z0 = Qx0 of the initial data (3) must satisfy the consistency condition

z0 = QE−1
1 (A1Py0 + s(t0)) .

3 Global existence and uniqueness results

The main results of this paper is the existence and uniqueness of the solution of the problem (2)-(4)
with boundary and initial conditions (10) and (8) and coupling conditions (28) and (31) and additional
topological index-1 conditions (39)-(40). We summarize here the equations for the reader’s conve-
nience:

dy
dt

= PE−1
1 (A1y + FD(Py) + s(t)) , in (0, T ], (1a)

z = QE−1
1 (A1y + s(t)) , (1b)

y(t0) = y0 = Px0, (1c)

−∇ · (εs∇ψ) = q (p− n+ C) , (1d)

−q∂tn+∇ · Jn = qR, Jn = q(Dn∇n− µnn∇ψ), in (0, T ]× Ω, (1e)

q∂tp+∇ · Jp = −qR, Jp = −q(Dp∇p+ µpp∇ψ), (1f)

n =nD, p = pD, in (0, T ]× ΓD, (1g)

ψ =ψbi + uD,i, in (0, T ]× ΓD,i, i = 0, 1, . . .mD, (1h)

∇ψ · ν = Jn · ν = Jp · ν = 0 in (0, T ]× ΓN , (1i)

n(x, 0) = n0(x), p(x, 0) = p0(x) in Ω, (1j)

uD =S>Dπx, (1k)

FD(Py) =− π>ADID(Jn + Jp). (1l)

First, we show that a unique solution exists for small time interval, then we prove a priori estimates
and, finally using these estimates we prove that this solution can be extended for all time intervals.

Let us start introducing the notation on functional spaces. We denote by Lr = Lr(Ω) and W k,r =
W k,r(Ω) the usual spaces of functions, with norms ‖·‖r and ‖·‖k,r, respectively, and we denote

Hk = W k,2, [24]. We also use the space L2
+ of all functions in L2 which are nonnegative almost ev-

erywhere. Let [0, T ] be a bounded time interval. For any Banach space V , we denote byC([0, T ];V ),
Lr([0, T ];V ), and Hk([0, T ];V ) the usual spaces of functions defined on [0, T ] with values in V .

DOI 10.20347/WIAS.PREPRINT.2607 Berlin 2019
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For the purposes of this paper, we introduce the following Banach spaces:

W 2,r
0 =

{
u ∈ W 2,r

∣∣ u|ΓD
= 0, ν · ∇u|ΓN

= 0
}
,

X =
{
u ∈ H1

∣∣ u|ΓD
= 0
}
,

Y = C([0, T ];L2) ∩ L2([0, T ];X) ∩H1([0, T ];X∗),

W = Y × Y ×
{
C([0, T ];W 2,2

0 ) ∩ L2([0, T ];W 2,r
0 ) ∩H1([0, T ];X)

}
,

CL = C([0, T ];Rm+nL),

CV = C([0, T ];Rm+nV ),

where X∗ is the dual space of X .

We introduce a special steady-state solution (ne, pe, ψe) of (1d)-(1f) which corresponds to zero exter-
nal electric voltage source vV and electric current source iI , where the potentials applied to the diode
vanish. Furthermore, this solution shall satisfy the conditions

ne = ni exp(ψe/UT ), pe = ni exp(−ψe/UT ). (2)

A steady-state solution corresponding to these constraints represents a physical state in total ther-
modynamic equilibrium. The equilibrium voltage ψe is uniquely determined by the following nonlinear
elliptic problem:

−∇ · (εs∇ψ) = qC − qni (exp(ψ/UT )− exp(−ψ/UT )) ,

ψ(x, t) = ψbi(x), x ∈ ΓD,i, i = 0, 1, . . .mD,
(3)

where

ψbi = UT ln
nD
ni
, nD =

C

2
+

√(
C

2

)2

+ n2
i .

Definition 1 (Solution to the coupled system) A solution of the system of equation (1a),(1b),(1d)-
(1f) with boundary conditions (1g)-(1i) and initial conditions (1c) and (1j), coupling conditions (1k) and
(1l) and additional topological index-1 conditions (39)-(40) is a tuple (n, p, ψ,y, z) such that:

i) the unknown y belongs to CL and satisfies

dy
dt

= PE−1
1 (A1y + FD(Py) + s(t)) ;

where the functional FD is defined in (33);

ii) z belongs to CV and is given by

z = QE−1
1 (A1y + s(t)) ;

iii) (n− ne, p− pe, ψ − ψe) ∈ Y , n, p ∈ C([0, T ];L2
+) satisfy the initial conditions (1j);

iv) the triple (n, p, ψ) satisfies the Poisson equation (1d) for all t ≥ 0;

v) for all test functions ξn, ξp ∈ Y , n and p satisfy the weak formulation∫ T

0

[
(∂tn, ξn) + (Dn∇n− µnn∇ψ,∇ξn) + (R, ξn)

]
dt = 0, (4a)∫ T

0

[
(∂tp, ξp) + (Dp∇p+ µpp∇ψ,∇ξp) + (R, ξp)

]
dt = 0, (4b)

where (·, ·) is the usual pairing between X∗ and X .
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 11

3.1 Local existence and uniqueness

We start by proving the following result.

Theorem 1 (Local existence and uniqueness) Let the source functions iI(t) and vV (t) be con-
tinuous, let the network matrices be symmetric, positive definite and the topological conditions (1k)
and (1l) be fulfilled, and let diffusivities and mobilities be constant. Then problem (1) admits a unique
solution, provided T > 0 is sufficiently small.

Proof. We introduce the Banach space

Z = (ne, pe) + C([0, T ];L2 × L2) ∩ L2([0, T ];X2)

and fix the pair of functions (n̂, p̂) ∈ Z and ŷ ∈ CL, with n̂(·, 0) = n0(·), p̂(·, 0) = p0(·), and
ŷ(0) = y0. We consider the following linearized problem for (n, p):∫ T

0

[
(∂tn, ξn) + (Dn∇n+ µnn̂

+Ê,∇ξn) + (R̂+, ξn)
]
dt = 0, (5a)∫ T

0

[
(∂tp, ξp) + (Dp∇p− µpp̂+Ê,∇ξp) + (R̂+, ξp)

]
dt = 0, (5b)

for all test functions ξn, ξp ∈ Y . We have indicated with R̂+=R(n̂+, p̂+), in which we have used the

notation the notation g+:= max(g, 0), for all function g and Ê = −∇ψ̂ where ψ̂ is the solution of the
Poisson equation with source term q(p̂+ − n̂+ + C) and boundary conditions

ψ(x, t) = ψbi(x) + ûD,i(t), x ∈ ΓD,i, i = 0, 1, . . .mD,

ûD = S>DπP ŷ.

We consider also the problem for y

dy
dt

= PE−1
1 (A1ŷ + FD(P ŷ) + s(t)) (5c)

with
FD(P ŷ) = −π>ADID(q(Dn∇n̂−Dp∇p̂+ (µnn̂+ µpp̂)Ê)).

The system of decoupled equations (5) admits a unique solution (n, p,y) which satisfies (n, p) ∈
(ne, pe) + Y 2,y ∈ CL, and have the initial data n(·, 0) = n0(·), p(·, 0) = p0(·), y(0) = y0, the
same initial data (1c) and (1j) of the original problem. In fact, the existence of a unique solution y
to (5c) follows immediately by time integration of the equation over [0, t]. Because of the continuous
embedding of H1 into L4 and the Poisson equation [25], we have the following estimates

‖µnn̂+Ê‖2 ≤ c‖n̂‖4‖Ê‖4 ≤ c‖n̂‖1,2‖Ê‖1,2 ≤ c‖n̂‖1,2(1 + |ŷ|+ ‖n̂‖2 + ‖p̂‖2).

A similar estimates follows for the hole distribution. This means the terms µnn̂+Ê and µpp̂+Ê are
in L2 so we can apply the standard results, see for example [24], for linear parabolic equations with
discontinuous coefficients to get the existence of a unique solution (n, p,y) to (5a)–(5b). We define
an operator Q from Z × CL to Z × CL which, to any (n̂, p̂, ŷ) ∈ Z × CL associates the solution
(n, p,y) of the problem (5)

(n̂, p̂, ŷ)→ (n, p,y) =: Q(n̂, p̂, ŷ).
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G. Alì, N. Rotundo 12

For all (n, p,y) ∈ Z × CL, we introduce the norm

|||(n, p,y)|||2 = max
0≤t≤T

(
‖n(·, t)‖2

2 + ‖p(·, t)‖2
2 + |y(t)|2

)
+

∫ T

0

(
‖∇n(·, t)‖2

2 + ‖∇p(·, t)‖2
2

)
dτ.

We prove thatQ is is strictly contractive with respect to this norm, for T small enough, in the set

Sa =
{

(n, p,y) ∈ Z × CL : n(·, t) = n0(·), p(·, t) = p0(·),y(0) = y0, |||(n, p,y)|||2 ≤ a
}

where the constant a is such that a>‖n0‖2
2+‖p0‖2

2+|y0|2. We consider two triples (n̂`, p̂`, ŷ`) ∈ Sa
for ` = 1, 2 and we set

(n`, p`,y`) = Q(n̂`, p̂`, ŷ`), Ê` = Ê(n̂`, p̂`, ŷ`), for ` = 1, 2

where Ê` = −∇ψ̂` depends on the solution ψ̂` of the Poisson equation with source term q(p̂+
` −

n̂+
` + C) and the boundary term is related to ŷ`. We write (5a), with n = n1 and n = n2, both with

test function ξn = n1− n2. Subtracting the two equations and integrating over the time interval [0, t],
we obtain

1

2
‖n1 − n2‖2

2 +Dn

∫ t

0

‖∇(n1 − n2)‖2
2dτ

= −µn
∫ t

0

(
n̂+

1 Ê1 − n̂+
2 Ê2,∇(n1 − n2)

)
dτ −

∫ t

0

(
R̂+

1 − R̂+
2 , n1 − n2

)
dτ

≤ µn

∫ t

0

‖n̂+
1 Ê1 − n̂+

2 Ê2‖2‖∇(n1 − n2)‖2 dτ +

∫ t

0

‖R̂+
1 − R̂+

2 ‖2‖n1 − n2‖2 dτ

(6)

in which R̂+
` = R(n̂+

` , p̂
+
` ), ` = 1, 2.

To estimate the first term on the right-hand side of (6), we first observe that, using the Gagliardo-
Nierenberg inequality and the weighted Young inequality, for any function u ∈ H1 we have

‖u‖r ≤ c‖u‖1−η
2 ‖u‖η1,2 + c‖u‖2 ≤ c(δ)‖u‖2 + δ‖u‖1,2, (7)

where δ > 0 can be chosen arbitrarily small, and η = d
(

1
2
− 1

r

)
∈ (0, 1), if we choose 2 < r < 6.

Moreover, for r > d, we can write

‖Ê1 − Ê2‖∞ ≤ c‖Ê1 − Ê2‖1,r ≤ c(|ŷ1 − ŷ2|+ ‖n̂1 − n̂2‖r + ‖p̂1 − p̂2‖r).
and

‖Ê2‖6 ≤ c‖Ê2‖1,2 ≤ c(1 + |ŷ2|+ ‖n̂2‖2 + ‖p̂2‖2) ≤ c(a).

Then we have

‖n̂+
1 Ê1 − n̂+

2 Ê2‖2 ≤ ‖n̂1‖2‖Ê1 − Ê2‖∞ + ‖Ê2‖6‖n̂1 − n̂2‖3

≤ c(a)
[
c|ŷ1 − ŷ2|+ c(δ)(‖n̂1 − n̂2‖2 + ‖p̂1 − p̂2‖2)

+ δ(‖n̂1 − n̂2‖1,2 + ‖p̂1 − p̂2‖1,2)
]
.

(8)

So, we can estimate

µn

∫ t

0

‖n̂+
1 Ê1 − n̂+

2 Ê2‖2‖∇(n1 − n2)‖2 dτ

≤ c(a, δ)

∫ t

0

(|ŷ1 − ŷ2|2 + ‖n̂1 − n̂2‖2
2 + ‖p̂1 − p̂2‖2

2) dτ

+ δ

∫ t

0

(‖n̂1 − n̂2‖2
1,2 + ‖p̂1 − p̂2‖2

1,2) dτ + δ

∫ t

0

‖∇(n1 − n2)‖2
2 dτ

≤ max{c(a, δ)T, δ}|||(ŷ1 − ŷ2, n̂1 − n̂2, p̂1 − p̂2)|||+ δ

∫ t

0

‖∇(n1 − n2)‖2
2 dτ.
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 13

For the second term on the right-hand side of (6), using the definition (6) of the recombination term
and the assumption (7), we get∫ t

0

‖R̂+
1 − R̂+

2 ‖2‖n1 − n2‖2 dτ ≤
∫ t

0

LR(‖n̂1 − n̂2‖2 + ‖p̂1 − p̂2‖2)‖n1 − n2‖2 dτ

≤
∫ t

0

[
c(δ)(‖n̂1 − n̂2‖2

2 + ‖p̂1 − p̂2‖2
2) + δ‖n1 − n2‖2

2

]
dτ

≤ c(δ)T |||(ŷ1 − ŷ2, n̂1 − n̂2, p̂1 − p̂2)|||+ δ

∫ t

0

‖n1 − n2‖2
2 dτ.

Combining the previous estimates, we get

1

2
‖n1 − n2‖2

2 +Dn

∫ t

0

‖∇(n1 − n2)‖2
2dτ

≤max{c(a, δ)T, δ}|||(ŷ1 − ŷ2, n̂1 − n̂2, p̂1 − p̂2)|||+ δ

∫ t

0

‖n1 − n2‖2
1,2 dτ.

(9)

An analogous estimate holds for p1 − p2, that is,

1

2
‖p1 − p2‖2

2 +Dp

∫ t

0

‖∇(p1 − p2)‖2
2dτ

≤max{c(a, δ)T, δ}|||(ŷ1 − ŷ2, n̂1 − n̂2, p̂1 − p̂2)|||+ δ

∫ t

0

‖p1 − p2‖2
1,2 dτ.

(10)

Next, we write (1a) for y = y1,y = y2, subtract the resulting equations, and multiply the result by
y1 − y2. We note that

P>E1P = P>E>1 P , (11)

which, together with y1 − y2 = P (y1 − y2), implies

d

dt

(
1

2
(y1 − y2)>E1(y1 − y2)

)
= (y1 − y2)>E1

d

dt
(y1 − y2)

= (y1 − y2)>E1

{
PE−1

1 (A1ŷ1 + FD(P ŷ1))− PE−1
1 (A1ŷ2 + FD(P ŷ2))

}
= (y1 − y2)>

{
E1PE

−1
1 A1 (ŷ1 − ŷ2) + FD(P ŷ1)−FD(P ŷ2)

}
.

After integrating with respect to time, we find

1

2
(y1 − y2)>E1(y1 − y2)

=

∫ t

0

(y1 − y2)>
{(
E1PE

−1
1 A1(ŷ1 − ŷ2) + FD(P ŷ1)−FD(P ŷ2)

)}
dτ

≤
∫ t

0

|y1 − y2|2 dτ + c

∫ t

0

(
|ŷ1 − ŷ2|2 + |FD(P ŷ1)−FD(P ŷ2)|2

)
dτ.

From the definition of FD, we have

|FD(P ŷ1)−FD(P ŷ2)|2 ≤ c

mD∑
i=1

|JD,i(Ĵ1)− JD,i(Ĵ2)|2,

with
Ĵ ` = q(Dn∇n̂` + µnn̂`Ê` −Dp∇p̂` + µpp̂`Ê`), ` = 1, 2.
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G. Alì, N. Rotundo 14

We notice that since n̂1 − n̂2 = 0 on ΓD and ν · ∇(n̂1 − n̂2) = 0 on ΓN we have that

L(∆(n̂1 − n̂2)) = − n̂1 − n̂2

εs
.

Using also the linearity of JD,i(J) with respect to J , we find that

JD,i(Dn∇(n̂1 − n̂2)) = JD,i(Dp∇(p̂1 − p̂2)) = 0,

and then

|JD,i(Ĵ1)− JD,i(Ĵ2)| ≤ qµn|JD,i(n̂1Ê1 − n̂2Ê2)|+ qµp|JD,i(p̂1Ê1 − p̂2Ê2)|. (12)

Moreover, for any vector function J(x) such that ν · J = 0 on ΓN , we have

|JD,i(J)| =

∣∣∣∣∫
Ω

∇wi · (εs∇L(∇ · J) + J) dx

∣∣∣∣
≤ ‖∇wi‖2

(
‖εs∇L(∇ · J)‖2 + ‖J‖2

)
≤ c‖J‖2. (13)

In fact, if we pose ϕ = L(∇ · J), we have by definition

−
∫

Ω

ϕ∇ · (εs∇ϕ) dx =

∫
Ω

ϕ∇ · J dx,

which, integrating by parts and using the boundary conditions for ϕ, and the condition for J , yields∫
Ω

εs|∇ϕ|2 dx = −
∫

Ω

(∇ϕ) · J dx ≤ δ‖∇ϕ‖2
2 + c(δ)‖J‖2

2.

Choosing the positive constant δ small enough, we get

‖∇ϕ‖2 ≤ c‖J‖2, (14)

which implies the last inequality in (13). We can apply this result to (12), obtaining

|JD,i(Ĵ1)− JD,i(Ĵ2)|2 ≤ c(‖n̂1Ê1 − n̂2Ê2‖2
2 + ‖p̂1Ê1 − p̂2Ê2‖2

2), (15)

which, in turns, yields

|FD(P ŷ1)−FD(P ŷ2)|2 ≤ c(a)
(
c|ŷ1 − ŷ2|2 + c(δ)(‖n̂1 − n̂2‖2

2 + ‖p̂1 − p̂2‖2
2)

+δ(‖n̂1 − n̂2‖2
1,2 + ‖p̂1 − p̂2‖2

1,2)
)
.

Since the matrixE1 is positive definite, there exist a constant cE > 0 such that

y>E1y ≥ cE|y|2.

Then, using the previous estimates, we find

cE|y1 − y2|2 ≤
1

2
(y1 − y2)>E1(y1 − y2)

≤ max{c(a, δ)T, δ}|||(ŷ1 − ŷ2, n̂1 − n̂2, p̂1 − p̂2)|||+ T max
0≤t≤T

|y1 − y2|2. (16)

Finally, we can combine (9), (10) and (16), and choose T and δ small enough so that

|||(y1 − y2, n1 − n2, p1 − p2)||| ≤ cQ|||(ŷ1 − ŷ2, n̂1 − n̂2, p̂1 − p̂2)|||,
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Existence and uniqueness of solution parabolic PDAEs in semiconductor modeling 15

for some positive constant cQ < 1. So we have proved that there exists a time T > 0, such that Q
becomes a contraction on Sa, then the existence of a unique fixed point (n∗, p∗,y∗) ∈ Sa it is ensured
by the Banach’s fixed point theorem. To show that this fixed point is the unique solution to (2)-(4), it is
sufficient to prove the nonnegativity of n∗ and p∗. To this end, we consider n−∗ = min(n∗, 0) ∈ Y .
Writing (5a), for the test function ξn = n−∗ , we obtain

1

2
‖n−∗ (t)‖2

2 +Dn

∫ t

0

‖∇n−∗ ‖2
2dτ =

∫ t

0

∫
Ω

(−µnn+
∗ E∗ · ∇n−∗ −R(n+

∗ , p
+
∗ )n−∗ )dxdτ

=

∫ t

0

∫
Ω

r(n+
∗ , p

+
∗ )n2

i n
−
∗ dxdτ ≤ 0.

This means that n−∗ vanishes almost everywhere; that is, n∗ is nonnegative almost everywhere. In the
same way we can prove the nonnegativity of p∗.

To prove the general existence and uniqueness of solution of the problem (1) we need to ensure that
it is possible to prolong to arbitrary time intervals the solution, whose existence is proved in theorem
1.

3.2 Global existence and uniqueness

In this section we prove some a priori estimates which allow for the prolongation of solution of problem
(1). We start introducing the definition of the energy of the system which is the sum of two contributions
one is the energy associated to the device and the other is the energy associated to the circuit.

Energy associated to the device

The local physical energy associated to the device is defined as

wD = qUT

{
n
(

log
n

ni
− 1
)

+ p
(

log
p

ni
− 1
)}

+
εs
2
|∇ψ|2. (17)

Using the continuity equations in (1e) and (1f), the time derivative of the local energy is given by

∂twD =−∇ ·
{
− UT log

n

ni
Jn + UT log

p

ni
Jp

}
− Jn ·

{
UT

1

n
∇n
}

+ Jp ·
{
UT

1

p
∇p
}

− qUTR log
np

n2
i

+ εs∇ψ · ∂t∇ψ.

Considering the equations in (1d)-(1f) and the Einstein’s relations (5), we get

∂twD +∇ ·
{
− UT log

n

ni
Jn + UT log

p

ni
Jp

}
=

− 1

qnµn
J2
n −

1

qpµp
J2
p −∇ψ ·

{
Jn + Jp − εs∂t∇ψ

}
− qUTR log

np

n2
i

.
(18)

The total energy associated to the device is defined by

WD =

∫
Ω

wDdx.
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Integrating (18) on the domain Ω we have

dWD

dt
+

∫
Ω

∇ ·
{
− UT log

n

ni
Jn + UT log

p

ni
Jp

}
dx

=−
∫

Ω

( J2
n

qµnn
+
J2
p

qµpp

)
dx−

∫
Ω

qUTR log
np

n2
i

dx

−
∫

Ω

∇ψ ·
(
Jn + Jp − εs∂t∇ψ

)
dx.

(19)

We apply the Gauss theorem on the second term, we use nDpD = n2
i and the boundary conditions∫

Ω

∇ ·
(
−UT log

n

ni
Jn + UT log

p

ni
Jp

)
dx

=

mD∑
i=0

∫
ΓD,i

νi ·
(
− UT log

nD
ni
Jn + UT log

pD
ni
Jp

)
dσ

=

mD∑
i=0

∫
ΓD,i

−UT log
nD
ni

(
Jn + Jp

)
· νidσ = −

mD∑
i=0

∫
ΓD,i

ψbi

(
Jn + Jp

)
· νidσ.

Integrating by parts the last term in (19) and using (11) and (13), we obtain

−
∫

Ω

∇ψ·
(
Jn + Jp − εs∂t∇ψ

)
dx

= −
∫
∂Ω

ψ
(
Jn + Jp − εs∂t∇ψ

)
· νdσ +

∫
Ω

ψ∇ ·
(
Jn + Jp − εs∂t∇ψ

)
dx

= −
mD∑
i=0

∫
ΓD,i

(ψbi + uD,i)
(
Jn + Jp − εs∂t∇ψ

)
· νidσ

= −
mD∑
i=0

∫
ΓD,i

ψbi

(
Jn + Jp − εs∂t∇ψ

)
· νidσ +

mD∑
i=0

uD,iJD,i.

Then we can rewrite (19)

dWD

dt
=−

∫
Ω

( J2
n

qµnn
+
J2
p

qµpp

)
dx−

∫
Ω

qUTR log
np

n2
i

dx

+

mD∑
i=0

∫
ΓD,i

ψbi(εs∂t∇ψ) · νi dσ + u>DJD.

Energy associated to the circuit

The energy associated to the circuit without the device is

WC =
1

2
y>E1y −

1

2
y>π>ADCDA

>
Dπy =

1

2
u>ACCA

>
Cu+

1

2
i>LLiL. (20)

Using the circuit equations (1a)-(1b), and the symmetry property (11), we get

dWC

dt
= y>E1

dy

dt
− y>π>ADCDA

>
Dπ

dy

dt

= y>E1PE
−1
1 (A1y + FD(Py) + s(t))− y>π>ADCDA

>
Dπ

dy

dt
.
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From the definition of sD and of FD, equations (31) and (33), we have

π>ADCDA
>
Dπ

dy

dt
= sD + FD(Py).

Moreover, recalling (42), we have

E1PE
−1
1 FD(Py) = E1(P +Q)E−1

1 FD(Py) = FD(Py).

Then we get

dWC

dt
= y>E1PE

−1
1 (A1y + s(t))− y>sD.

Recalling (28) and (30), we recognize that

y>sD = y>π>SDJD = u>DJD.

In conclusion, we find

dWC

dt
= y>E1PE

−1
1 (A1y + s(t))− u>DJD. (21)

The total energy of the coupled system

For the total energy of the system W = WD +WC we obtain

dW

dt
=−

∫
Ω

( J2
n

qµnn
+
J2
p

qµpp

)
dx−

∫
Ω

qUTR log
np

n2
i

dx

+

mD∑
i=0

∫
ΓD,i

ψbi(εs∂t∇ψ) · νi dσ + y>E1PE
−1
1 (A1y + s(t)) .

An alternative definition for the total energy where no boundary terms appear in the total energy
balance equation can be given using the steady-state solution (ne, pe, ψe) defined via (2) and (3). We
consider a shifted local energy w∗D:

w∗D = qUT

{
n
(

log
n

ne
− 1
)

+ ne + p
(

log
p

pe
− 1
)

+ pe
}

+
εs
2
|∇(ψ − ψe)|2, (22)

whose time derivative is

∂tw
∗
D = ∂twD − qUT log

ne

ni

∂tn− qUT log
pe

ni

∂tp− εs∇ψe · ∂t∇ψ

= ∂twD − qψe∂tn+ ψe∂tp+ ψe∇ · (εs∂t∇ψ)−∇ · (ψeεs∂t∇ψ)

= ∂twD + ψe∂t(−qn+ qp+∇ · (εs∇ψ))−∇ · (ψeεs∂t∇ψ)

= ∂twD −∇ · (ψeεs∂t∇ψ).

Defining the shifted total energy associated to the device as

W ∗
D =

∫
Ω

w∗Ddx
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we get

dW ∗
D

dt
=

dWD

dt
−
∫

Ω

∇ · (ψeεs∂t∇ψ)dx =
dWD

dt
−

mD∑
i=0

∫
ΓD,i

ψbi(εs∂t∇ψ) · νdx.

Then, the shifted total energy W ∗ = W ∗
D +WC satisfies

dW ∗

dt
= −

∫
Ω

( J2
n

qµnn
+
J2
p

qµpp

)
dx−

∫
Ω

qUTR log
np

n2
i

dx + y>E1PE
−1
1 (A1y + s(t)) .

We introduce the following notation: for any function f(n, p, ψ,y) we write f e = f(ne, pe, ψe,ye),
where ye = 0.

For any α > 0, we define the Liapunov functional

Hα =

∫
Ω

qUT

{
(n+ α)

(
log

n+ α

ne + α
− 1
)

+ ne
}

dx

+

∫
Ω

qUT

{
(p+ α)

(
log

p+ α

pe + α
− 1
)

+ pe
}

dx +

∫
Ω

εs
2
|∇(ψ − ψe)|2dx +WC .

(23)

The parameter α is needed to ensure that Hα is well defined, since n and p may vanish locally.
Formally, as α tends to zero, the Liapunov functionalHα tends to the total physical energy W ∗ of the
coupled system. This assertion can be stated in a precise way by observing that the function

g(z) =

{
z log z if z > 0,

0 if z = 0
(24)

is continuous for z ∈ [0,∞). Then the functional H = limα→0Hα is well defined, and we have
H = W ∗. We define the following functions ψn(x, t), ψp(x, t), ψe

n(x) and ψe
p(x):

ψn = ψ − UT log
n+ α

ni
, ψp = ψ + UT log

p+ α

ni
, (25)

ψe
n = ψe − UT log

ne + α

ni
, ψe

p = ψe + UT log
pe + α

ni
. (26)

Lemma 1 For the functionalHα defined in (23), we have

Hα(t) = Hα(0) +

∫ t

0

∫
Ω

(
Jn · ∇(ψn − ψe

n) + Jp · ∇(ψp − ψe
p)
)

dx dτ

−
∫ t

0

∫
Ω

qUTR log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx dτ +

∫ t

0

y>E1PE
−1
1 (A1y + s(τ)) dτ.

(27)

Proof. First we compute the time derivative of the functional Hα which, for any solution of the full
problem, is a function of time only and its time derivative is

dHα

dt
=

∫
Ω

qUT

(
log

n+ α

ne + α
∂tn+ log

p+ α

pe + α
∂tp
)

dx

+

∫
Ω

εs∇(ψ − ψe) · ∂t∇ψ dx + y>E1PE
−1
1 (A1y + s(t))− u>DJD

=

∫
Ω

UT

(
log

n+ α

ne + α
∇ · Jn − log

p+ α

pe + α
∇ · Jp

)
dx

−
∫

Ω

qUTR log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx +

∫
Ω

εs∇(ψ − ψe) · ∂t∇ψ dx

+ y>E1PE
−1
1 (A1y + s(t))− u>DJD,

(28)
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in which we have used the model equations in (1).

We integrate by parts the first term on the right-hand side of (28), and using the definitions (25) and
(26) we obtain:∫

Ω

UT

(
log

n+ α

ne + α
∇ · Jn − log

p+ α

pe + α
∇ · Jp

)
dx

=

∫
Ω

(
Jn · ∇(ψn − ψe

n) + Jp · ∇(ψp − ψe
p)
)

dx−
∫

Ω

(Jn + Jp) · ∇(ψ − ψe) dx.

Inserting this in (28) we get

dHα

dt
=

∫
Ω

(
Jn · ∇(ψn − ψe

n) + Jp · ∇(ψp − ψe
p)
)

dx

−
∫

Ω

qUTR log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx

−
∫

Ω

(−εs∂t∇ψ + Jn + Jp) · ∇(ψ − ψe) dx

+ y>E1PE
−1
1 (A1y + s(t))− u>DJD.

(29)

Integrating by parts the last integral and using (11) and the definition of JD, we obtain

dHα

dt
=

∫
Ω

(
∇(ψn − ψe

n) · Jn +∇(ψp − ψe
p) · Jp

)
dx

−
∫

Ω

qUTR log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx + y>E1PE

−1
1 (A1y + s(t)) .

(30)

Integrating on time, we get the thesis.

3.3 A priori estimates

In the following lemmas we prove the a priori bounds for the solution.

Lemma 2 Assume that the recombination is of the type

R(n, p) = r(n, p)
(
np− n2

i

)
, with 0 ≤ r(n, p)(1 + |n|+ |p|) ≤ r̄ (31)

were r̄ is a constant, and the mobilities are bounded. Then there exist constants C1, C2 independent
of t such that for any solution n, p of the system it holds that

‖n(·, t)‖1 + ‖p(·, t)‖1 + ‖E(·, t)‖2
2 + |y(t)|2 ≤ C1e

C2t, t ≥ 0. (32)

Proof. We estimate all the terms on the right-hand side of (27). We start observing that, thanks to

(25), we have n = ni exp
(
ψ−ψn

UT

)
− α, which leads to

∇n = ni exp
(ψ − ψn

UT

) 1

UT
∇(ψ − ψn) =

n+ α

UT
∇(ψ − ψn).

Then, the electron current can be written as

Jn = qµn(UT∇n− n∇ψ) = qµn((n+ α)∇(ψ − ψn)− n∇ψ)

= qµn(−(n+ α)∇ψn + α∇ψ),
(33)
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and for the first term on the right-hand side of (27) we find∫
Ω

Jn · ∇(ψn − ψe
n) dx =

∫
Ω

qµn(−(n+ α)∇ψn + α∇ψ) · ∇(ψn − ψe
n) dx

=

∫
Ω

qµn

(
− (n+ α)|∇ψn|2 + (n+ α)∇ψn · ∇ψe

n + α∇ψ · (∇ψn −∇ψe
n)
)

dx

≤
∫

Ω

qµn

(
− (n+ α)|∇ψn|2 + (n+ α)|∇ψn||∇ψe

n|+ α|∇ψ|(|∇ψn|+ |∇ψe
n|)
)

dx

≤
∫

Ω

qµn

(
(n+ α)|∇ψe

n|2 +
α2

(n+ α)
|∇ψ|2

)
dx ≤ c(1 + ‖n‖1 + ‖ψ‖2

2).

In a similar way, we can estimate∫
Ω

Jp · ∇(ψp − ψe
p) dx ≤ c(1 + ‖p‖1 + ‖ψ‖2

2).

For the recombination term, we have∫
Ω

qUTR(n, p) log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx

=

∫
Ω

qUT r(n, p)
(
np− n2

i

)
log

(n+ α)(p+ α)

(ne + α)(pe + α)
dx.

Observing that nepe = n2
i , we have the identity:

np− n2
i = (n+ α)(p+ α)− (ne + α)(pe + α)− α(n+ p− ne − pe), (34)

which leads to

−
∫

Ω

qUTR log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx

=− qUT
∫

Ω

r
(

(n+ α)(p+ α)− (ne + α)(pe + α)
)

log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx

+ qUT

∫
Ω

αr(n+ p− ne − pe) log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx

≤qUT
∫

Ω

αr(n+ p− ne − pe) log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx

≤c
∫

Ω

∣∣∣∣r log
(n+ α)(p+ α)

(ne + α)(pe + α)

∣∣∣∣ |n+ p+ ne + pe| dx

≤c(1 + ‖n‖1 + ‖p‖1).

The last inequality follows from the hypothesis on r(n, p) (31), and from the inequality∣∣∣∣ log(z + a)

z + a

∣∣∣∣ ≤ max

(
1

e
,

∣∣∣∣ log a

a

∣∣∣∣) , ∀z ≥ 0, a > 0.

Finally, for the last term, recalling (1b), we have immediately

y>E1PE
−1
1 (A1y + s(t)) ≤ c(1 + |y|2).
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Combining the previous estimates, we get

Hα(t) ≤ c1 + c2

∫ t

0

(
1 + ‖n‖1 + ‖p‖1 + ‖∇ψ‖2

2 + |y|2
)

ds. (35)

The thesis follows after noting that

Hα(t) ≥ c
(

1 + ‖n‖1 + ‖p‖1 + ‖∇ψ‖2
2 + |y|2

)
,

with the help of Gronwall’s lemma.

Lemma 3 Under the same hypothesis of Lemma 2, there exists a constant c = c(T ) such that for all
t ≤ T we have

‖n(·, t)‖2
2 + ‖p(·, t)‖2

2 +

∫ t

0

(
‖∇n(·, s)‖2

2 + ‖∇p(·, s)‖2
2

)
dτ ≤ c. (36)

Proof. We consider the weak formulation (4a) with ξn = n− ne and integrate with respect to time

1

2

(
‖n(·, t)− ne‖2

2 − ‖n(·, 0)− ne‖2
2

)
+Dn

∫ t

0

∫
Ω

|∇(n− ne)|2dxdτ

= −Dn

∫ t

0

∫
Ω

∇ne · ∇(n− ne)dxdτ +

∫ t

0

(µnn∇ψ,∇(n− ne))dτ −
∫ t

0

(R, n− ne)dτ.

We have the estimate

−
∫ t

0

∫
Ω

∇ne · ∇(n− ne)dxdτ ≤ 1

2

∫ t

0

(
‖∇n(·, τ)‖2

2 + ‖∇ne‖2
2

)
dτ.

Furthermore, integrating by parts and using the Poisson equation, we obtain∫ t

0

∫
Ω

n∇ψ · ∇(n− ne) dxdτ

= −
∫ t

0

∫
Ω

(n− ne)(∇ · ∇ψ)(n− ne) dxdτ −
∫ t

0

∫
Ω

neE · ∇(n− ne) dxdτ

≤ q

2εs

∫ t

0

∫
Ω

(C − n+ p)(n− ne)2 dxdτ +

∫ t

0

(
c‖E‖2

2 +
UT
4
‖∇(n− ne)‖2

2

)
dτ

≤ q

2εs

∫ t

0

∫
Ω

n2(p− n) dxdτ +

∫ t

0

c‖E‖2
2 dτ +

UT
4

∫ t

0

‖∇(n− ne)‖2
2 dτ

≤ c(T )
{

1 + ‖n‖2
2 + ‖p‖2

2

}
+

q

2εs

∫ t

0

∫
Ω

n2(p− n) dxdτ +
UT
4

∫ t

0

‖∇(n− ne)‖2
2 dτ.

We have used the result in Lemma 2 to estimate all linear terms in n and p and the L2-norm of E. For
the recombination generation term whose form is in (6) and for which we have assumed (31) we have

|(R, n− ne)| ≤
∫

Ω

∣∣r(n, p)(np− n2
i )(n− ne)dx

∣∣ ≤ c
(
1 + ‖n‖2

2 + ‖p‖2
2

)
Finally, we get the estimate

‖n(t)− ne‖2
2 +

Dn

2

∫ t

0

∫
Ω

|∇(n− ne)|2dxdτ

≤ c(T )

{
1 +

∫ t

0

(
‖n‖2

2 + ‖p‖2
2

)
dτ

}
+
q

εs

∫ t

0

∫
Ω

n2(p− n) dxdτ,
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which leads to

‖n(t)‖2
2 +

∫ t

0

‖∇n‖2
2 dτ ≤ c(T )

{
1 +

∫ t

0

(
‖n‖2

2 + ‖p‖2
2

)
dτ

}
+ cn

∫ t

0

∫
Ω

n2(p− n) dxdτ,

for some positive constant cn. Similarly for p we have

‖p(t)‖2
2 +

∫ t

0

‖∇p‖2
2 dτ ≤ c(T )

{
1 +

∫ t

0

(
‖n‖2

2 + ‖p‖2
2

)
dτ

}
− cp

∫ t

0

∫
Ω

p2(p− n) dxdτ,

for some positive constant cp. Summing up we get

‖n(t)‖2
2 + ‖p(t)‖2

2 +

∫ t

0

(
‖∇n‖2

2 + ‖∇p‖2
2

)
dτ

≤ c(T )

{
1 +

∫ t

0

(
‖n‖2

2 + ‖p‖2
2

)
dτ

}
+ c1

{∫ t

0

∫
Ω

(n2 − p2)(p− n) dxdτ

}
≤ c(T )

{
1 +

∫ t

0

(
‖n‖2

2 + ‖p‖2
2

)
dτ

}
,

in which we applied (n2 − p2)(p − n) = −(n + p)(n − p)2 ≤ 0. Using Gronwall’s lemma, we get
the thesis.

Combining the results in the previous Lemmas we have

Lemma 4 There exists a constant c = c(T ) such that for all t ≤ T we have

‖n(·, t)‖2
2 + ‖p(·, t)‖2

2 + |y|2 +

∫ t

0

(
‖∇n(·, τ)‖2

2 + ‖∇p(·, τ)‖2
2

)
dτ ≤ c. (37)

The main result of this paper is the following global existence and uniqueness theorem.

Theorem 2 [Global existence and uniqueness] Let the source functions iI(t) and vV (t) be continu-
ous, let the network matrices be symmetric, positive definite and the topological conditions (28) and
(31) be fulfilled, and let diffusivities and mobilities be constant. Then problem (2)-(4) admits a unique
solution on the time interval [0, T ] for any T ∈ (0,∞).

Proof. The local solution proved in Theorem 1 can be prolonged using the results in Lemmas 2, 3 and
4

4 Asymptotic behaviour of the solution

In this section, we study the asymptotic behaviour of the solution to (1) as t tends to infinity. For a single
device without coupling with an electric circuit, it is known that all solutions relax to equilibrium [26]
if the applied potential vanishes. Therefore, in the coupled system, we need to demand appropriate
topological conditions on the electric network to enable such a result. We derive sufficient conditions
on the network topology during the development of this section.
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Theorem 3 (Asymptotic behaviour of the solution) Under the assumption of Theorem 2, let the
network system satisfy the additional topological conditions

kerA>R ⊂ kerA>C ⊂ kerA>L . (1)

Moreover let the sources satisfy the decaying conditions

lim
t→∞
|s(t)|2 = 0,

∫ t

0

|s(τ)|2dτ ≤ K for all t ≥ 0. (2)

Then as time tends to infinity, the solution of the problem (1) approaches the equilibrium states mean-
ing that there exists īL ∈ kerA>L ⊂ RnL such that

n→ ne, p→ pe in L1,

ψ → ψe, in H1,

u→ 0, iV → 0, iL → īL in Euclidean norm.

(3)

Proof. The proof follows along the line of Gajewski’s analogous result in [26], modified to take into
account the coupling of the device with the circuit.

Summing and subtracting the term qµn(n + α)∇ψe
n in the definition of the current densities Jn

rewritten as in (33), we get

Jn = −qµn(n+ α)∇(ψn − ψe
n)− qµn(n+ α)∇ψe

n + qµnα∇ψ

= −qµn(n+ α)∇(ψn − ψe
n) + qµnα∇ψ − qµnα

n+ α

ne + α
∇ψe

= −qµn(n+ α)∇(ψn − ψe
n)− qµnα

n− ne

ne + α
∇ψe + qµnα∇(ψ − ψe),

in which we have used that from (26) we find∇ψe
n = α

ne+α
∇ψe and∇ψe

p = α
pe+α
∇ψe. Similarly, for

Jp we get

Jp = −qµp(p+ α)∇(ψp − ψe
p)− qµpα

p− pe

pe + α
∇ψe + qµpα∇(ψ − ψe).

Then we find, for arbitrary time t1 ≥ t0 ≥ 0,∫ t1

t0

∫
Ω

Jn·∇(ψn − ψe
n) dx dτ = −

∫ t1

t0

∫
Ω

qµn(n+ α)|∇(ψn − ψe
n)|2 dx dτ

+

∫ t1

t0

∫
Ω

qµnα

{
∇(ψ − ψe)− n− ne

ne + α
∇ψe

}
· ∇(ψn − ψe

n) dx dτ

≤ −q
2

∫ t1

t0

∫
Ω

µn(n+ α)|∇(ψn − ψe
n)|2 dx dτ

+ qα

∫ t1

t0

∫
Ω

µn
2

∣∣∣∣E− Ee − Ee(n− ne)

ne + α

∣∣∣∣2 dx dτ.

(4)

In a similar way we get∫ t1

t0

∫
Ω

Jp · ∇(ψp − ψe
p) dx dτ ≤ −q

2

∫ t1

t0

∫
Ω

µp(p+ α)|∇(ψp − ψe
p)|2 dx dτ

+ qα

∫ t1

t0

∫
Ω

µp
2

∣∣∣∣E− Ee − Ee(p− pe)

pe + α

∣∣∣∣2 dx dτ.
(5)
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d’

Using (4) and (5) in Lemma 1, considering the definition (6) and (34), for arbitrary time t1 ≥ t0 ≥ 0,
we can write

Hα(t1) +
q

2

∫ t1

t0

∫
Ω

(
µn(n+ α)|∇(ψn − ψe

n)|2 + µp(p+ α)|∇(ψp − ψe
p)|2
)

dx dτ

+ q

∫ t1

t0

∫
Ω

UT r[(n+ α)(p+ α)− (ne + α)(pe + α)] log
(n+ α)(p+ α)

(ne + α)(pe + α)
dx dτ

≤ Hα(t0) +

∫ t1

t0

y>E1PE
−1
1 (A1y + s) dτ

+ αq

∫ t1

t0

∫
Ω

[
µn
2

∣∣∣∣E− Ee − Ee(n− ne)

ne + α

∣∣∣∣2 +
µp
2

∣∣∣∣E− Ee − Ee(p− pe)

pe + α

∣∣∣∣2
+UT r(n+ p− ne − pe) log

(n+ α)(p+ α)

(ne + α)(pe + α)

]
dx dτ.

(6)

The last integral term in (6) is bounded, so we can pass to the limit for α→ 0 and find

H(t1) +
q

2

∫ t1

t0

∫
Ω

(
µnn|∇(φn − φe

n)|2 + µpp|∇(φp − φe
p)|2
)

dx dτ

≤ H(t0) +

∫ t1

t0

y>E1PE
−1
1 (A1y + s) dτ

(7)

where φn, φe
n, φp and φe

p are the physical quasi-Fermi levels which means

φn = ψ − UT log
n

ni
, φp = ψ + UT log

p

ni
, (8)

φe
n = ψe − UT log

ne

ni
, φe

p = ψe + UT log
pe

ni
, (9)

and

H(t) =

∫
Ω

qUT

[
n
(

log
n

ne
− 1
)

+ ne + p

(
log

p

pe
− 1

)
+ pe

]
dx

+

∫
Ω

εs
2
|E− Ee|2dx +

1

2
u>ACCA

>
Cu+

1

2
i>LLiL

= H∗(t) +
1

2
u>(t)ACCA

>
Cu(t) +

1

2
i>L(t)LiL(t).

(10)

Using Definition 1, and the definitions of y, z,E1 andA1, we can write

y>E1PE
−1
1 (A1y + s)

= y>E1(P +Q)E−1
1 (A1y + s)− y>E1QE

−1
1 (A1y + s)

= y> (A1y + s)− y>E1z = y> (Ay + s) + y>Az.

On the other hand, we have

−z>Az = z>E1z = z>E1QE
−1
1 (A1y + s)

= z>E1(P +Q)E−1
1 (A1y + s)− z>E1PE

−1
1 (A1y + s)

= z> (A1y + s)− z>E1y = z> (Ay + s) ,
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sinceQ>E1P = Q>(E −AQ)P = O. Summing up, we obtain the identity

y>E1PE
−1
1 (A1y + s) = (y + z)> [A(y + z) + s]

= −u>ARGA
>
Ru+ i>V vV + u>AIiI .

Next, recalling the definition of y and z, we write

y =

y′y′′
0

 :=

P CDu
iL
0

 , z =

z′0
z′′

 :=

QCDu
0
iV

 .

The condition kerA>R ⊂ kerA>C , and the positive-definiteness ofG, imply

u>ARGA
>
Ru ≥ cG|PRu|2 ≥ cG|P Cu|2 = cG|y′|2.

Also, we have

i>V vV + u>AIiI = y′>AIiI + z′>AIiI + z>2 vV ≤ |y′||s|+ |z||s|.

Recalling once more the expression of z in terms of y, we find

z = QE−1
1 (A1y + s) = Ē

−1
1 Q

> (A1y + s) .

Using the condition kerA>C ⊂ kerA>L , we can compute explicitely

Q>A1y =

−Q>CDARGA
>
R

O
A>V

P>CDu = M 1y
′,

which implies
|z| ≤ c(|y′|+ |s|). (11)

In conclusion, we find

y>E1PE
−1
1 (A1y + s) ≤ −cG|y′|2 + |y′||s|+ c(|y′|+ |s|)|s|

≤ −cG
2
|y′|2 + c|s|2, (12)

in which we have used the weighted Schwarz’s inequality. Inserting (12) in (7), we obtain

H(t1) +
q

2

∫ t1

t0

∫
Ω

(
µnn|∇(φn − φe

n)|2 + µpp|∇(φp − φe
p)|2
)

dx dτ

+
cG
2

∫ t1

t0

|y′|2 dτ ≤ H(t0) + c

∫ t1

t0

|s(τ)|2 dτ.
(13)

which implies for all t1 ≥ t0 ≥ 0 that

H(t1)− c
∫ t1

0

|s(τ)|2 dτ ≤ H(t0)− c
∫ t0

0

|s(τ)|2 dτ, (14)

and, using (2), that

H(t1) +
q

2

∫ t1

0

∫
Ω

(
µnn|∇(φn − φe

n)|2 + µpp|∇(φp − φe
p)|2
)

dx dτ

+
cG
2

∫ t1

0

|y′|2 dτ ≤ H(0) + cK.

(15)
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This means that there exists a sequence tj →∞ such that

lim
j→∞

[∫
Ω

(
n|∇φn|2 + p|∇φp|2

)
dx
]
t=tj

= 0. (16)

We show that (16) yields a bound on the norm of∇
√
n and∇√p, thanks to the identity∫

Ω

(
n|∇φn|2 + p|∇φp|2

)
dx =

∫
Ω

(
n

∣∣∣∣−E− UT∇nn
∣∣∣∣2 + p

∣∣∣∣−E + UT
∇p
p

∣∣∣∣2
)

dx

=

∫
Ω

(
(n+ p)|E|2 + 2UTE · ∇(n− p) + 4U2

T

(∣∣∇√n∣∣2 + |∇√p|2
))

dx.

(17)

Rearranging the terms in (17), we find, for t = tj ,

4U2
T

(
‖∇
√
n‖2 + ‖∇√p‖2

)
+

∫
Ω

(n+ p)|E|2 dx

=

∫
Ω

(
n|∇φn|2 + p|∇φp|2

)
dx−

∫
Ω

2UTE · ∇(n− p) dx ≤ c, (18)

since, integrating by parts, considering the boundary conditions (1g)-(1i) and the Poisson equation for
the electrostatic potential, we have

−
∫

Ω

E · ∇(n− p) dx = − q
εs

∫
Ω

(n− p− C)(n− p) dx +

∫
ΓD

(n− p)∇ψ · ν dσ

=
q

εs

∫
Ω

C(n− p) dx− q

εs

∫
Ω

(n− p)2 dx +

∫
ΓD

(n− p)∇ψ · ν dσ

≤ q

2εs
‖C‖2 − q

2εs
‖n− p‖2 +

1

4δ

∫
ΓD

|nD − pD|2 dσ + δ‖∇ψ‖2
L2(∂Ω)

≤ 3q

4εs
‖C‖2 +

1

4δ

∫
ΓD

|nD − pD|2 dσ.

Here, we have used ‖∇ψ‖2
L2(∂Ω) ≤ c‖ψ‖2

H2 ≤ c(‖C‖2 + ‖n− p‖2), and chosen δ small enough,
so that cδ ≤ q

4εs
. Then from (15) we can write

‖
√
n(tj)‖1,2 + ‖

√
p(tj)‖1,2 + ‖ψ(tj)‖1,2 ≤ c. (19)

Following [26], we use the compactness of the embeddings of W 1
2 into L2β with 3

2
< β < 3 and

L2γ(∂Ω) with 1 < γ < 2, we can suppose that there are two functions n̄ and p̄ belonging to Lβ and
Lγ(∂Ω) such that

√
n̄,
√
p̄ ∈ W 1

2 and

lim
j→∞

n(tj) = n̄, lim
j→∞

p(tj) = p̄ in Lβ and Lγ(∂Ω). (20)

Next, we prove the convergence of y and z. Using (15), we can write

1

2
u>(t)ACCA

>
Cu(t) +

1

2
i>L(t)LiL(t) +

cG
2

∫ t

0

|y′|2 dτ ≤ H(0) + cK. (21)

SinceC is positive definite, and y′ does not belong to the nullspace ofA>C , we haveu>ACCA
>
Cu ≥

cC |y′|2, which yields
cC
2
|y′|2 +

cG
2

∫ t

0

|y′|2 dτ ≤ H(0) + cK.
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Gronwal’s lemma implies that y′(t) → 0, with asymptotic decay as t → ∞. Then, estimate (11)
implies that z(t) → 0 as t → ∞. In particular, we have shown that u = y′ + z′ tends to zero, that
is,

lim
j→∞

u(tj) = 0. (22)

Finally, (21) implies the boundedness of y′′ = iL, due to the positive definiteness of L, which implies
the convergence of iL(t)→ īL.

From (20) and (22) it follows that

lim
j→∞

ψ(tj) = ψ̄ = L(p̄− n̄+ C) in W 2
β , (23)

and, since W 2
β ⊂ C , also that

lim
j→∞

n(tj) exp

(
−ψ(tj)

UT

)
= n̄e−ψ̄/UT , lim

j→∞
p(tj) exp

(
ψ(tj)

UT

)
= p̄eψ̄/UT in Lβ.

Moreover, recalling (8), we have the identities

n exp

(
− ψ

UT

)
= ni exp

(
− φn
UT

)
, p exp

(
ψ

UT

)
= ni exp

(
φp
UT

)
,

which imply

∇(ne−ψ/UT ) = − n

UT
e−ψ/UT∇φn, ∇(peψ/UT ) =

p

UT
eψ/UT∇φp.

Then, using (16) and (20), it is possible to show that n̄e−ψ̄/UT and p̄eψ̄/UT are constant, and from the
boundary conditions (1g) and (1h), written with uD = 0, because of (22), we find

n̄e−ψ̄/UT = nDe
−ψD/UT = ni, p̄eψ̄/UT = pDe

ψD/UT = ni.

This shows that
n̄ = nie

ψ̄/UT , p̄ = nie
−ψ̄/UT ,

and, thanks to (23), ψ̄ satisfies the defining equations for the equilibrium potential, with the same
boundary conditions, thus

ψ̄ = ψe, n̄ = ne, p̄ = pe. (24)

In particular, this implies that the limit current from the device to the circuit becomes zero as t goes to
infinity. Thus, from the cicuit equations (1), recalling that y′ and z tend to zero as time increases, the
limit value īL for y′′ = iL satisfies the conditionA>L īL = 0, that is, īL ∈ kerA>L .

We can finally pass from the sequence {tj} to the continuous limit for t → ∞, by recalling that the
functionH(t)− c

∫ t
0
|s(τ)|2 is decreasing, as shown in (14). Then, we have

lim
t→∞

{
H(t)− c

∫ t

0

|s(τ)|2
}

= lim
j→∞

{
H(tj)− c

∫ tj

0

|s(τ)|2
}

= −c lim
j→∞

∫ tj

0

|s(τ)|2,

which yields
lim
t→∞
H(t) = 0. (25)

The estimates (3) follow as in [26].

"Multi-dimensional Modeling and Simulation of electrically pumped semiconductor-based Emitters".
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