1,504 research outputs found

    Diffuse Intrinsic Pontine Glioma

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a leading cause of brain cancer-related death in children. These aggressive high-grade gliomas cannot be effectively treated and are associated with dismal prognosis. Whilst radiation therapy (RT) prolongs survival, it is a palliative therapy, as half of children with DIPG die within 1 year of diagnosis and almost all are dead by 2 years. These statistics have not changed for decades, despite a multitude of clinical trials. No chemotherapeutic regimen has been shown to improve survival, emphasizing the need to find novel and effective treatments. One of the principal reasons for this poor outcome was our limited knowledge of the biology of DIPG’s. Due to their location in brainstem, surgical resection is not feasible and up until recently, even performing a limited biopsy was considered too dangerous. In the last decade, DIPG tumor tissue has become available through autopsies and biopsies. This combined with the genome revolution has resulted in a transformation in our understanding of the underlying biology of this disease. Moreover, viable DIPG cells can now be grown in the laboratory which have allowed development of in-vitro (neurospheres) and in-vivo models (allograft and xenograft). This chapter summarizes recent advances in DIPG and potential novel therapies

    Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG registries

    Get PDF
    Purpose Diffuse intrinsic pontine glioma (DIPG) is a brainstem malignancy with a median survival of < 1 year. The International and European Society for Pediatric Oncology DIPG Registries collaborated to compare clinical, radiologic, and histomolecular characteristics between short-term survivors (STSs) and long-term survivors (LTSs). Materials and Methods Data abstracted from registry databases included patients from North America, Australia, Germany, Austria, Switzerland, the Netherlands, Italy, France, the United Kingdom, and Croatia. Results Among 1,130 pediatric and young adults with radiographically confirmed DIPG, 122 (11%) were excluded. Of the 1,008 remaining patients, 101 (10%) were LTSs (survival ≥ 2 years). Median survival time was 11 months (interquartile range, 7.5 to 16 months), and 1-, 2-, 3-, 4-, and 5-year survival rates were 42.3% (95% CI, 38.1% to 44.1%), 9.6% (95% CI, 7.8% to 11.3%), 4.3% (95% CI, 3.2% to 5.8%), 3.2% (95% CI, 2.4% to 4.6%), and 2.2% (95% CI, 1.4% to 3.4%), respectively. LTSs, compared with STSs, more commonly presented at age < 3 or > 10 years (11% v 3% and 33% v 23%, respectively; P < .001) and with longer symptom duration ( P < .001). STSs, compared with LTSs, more commonly presented with cranial nerve palsy (83% v 73%, respectively; P = .008), ring enhancement (38% v 23%, respectively; P = .007), necrosis (42% v 26%, respectively; P = .009), and extrapontine extension (92% v 86%, respectively; P = .04). LTSs more commonly received systemic therapy at diagnosis (88% v 75% for STSs; P = .005). Biopsies and autopsies were performed in 299 patients (30%) and 77 patients (10%), respectively; 181 tumors (48%) were molecularly characterized. LTSs were more likely to harbor a HIST1H3B mutation (odds ratio, 1.28; 95% CI, 1.1 to 1.5; P = .002). Conclusion We report clinical, radiologic, and molecular factors that correlate with survival in children and young adults with DIPG, which are important for risk stratification in future clinical trials

    Diffuse Intrinsic Pontine Glioma: A Therapeutic Challenge

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a tumor of the brainstem, specifically in the pons, accounting for 10–20% of all of central nervous system (CNS) tumors in children. Unfortunately, DIPG is the leading cause of death in children with CNS cancers. Clinical interventions trying to effectively treat children with DIPG have failed despite 40 years of clinical trials. The critical location of these tumors eliminates extensive surgical resection as an option. Radiation therapy (RT) is the standard of care, and although it improves the clinical symptoms of most patients, the results are temporary, with tumor progression typically occurring months post radiation. Given the dismal prognosis associated with this disease and the challenge to find chemotherapeutic agents, especially molecularly targeted drugs that improve the survival of the patients, there is a strong incentive to move new treatments forward into clinical trials. The more effective treatment would potentially involve combinatory therapeutic regimens with new epigenetic drugs that can offer synergistic benefits and potentially increase therapeutic efficacy. The increasing knowledge of genomic, epigenomic, and proteomic characteristics of DIPG is opening doors to new therapeutic avenues and provides hope and promise for this devastating childhood cancer

    Diffuse intrinsic pontine glioma: poised for progress

    Get PDF
    Diffuse intrinsic pontine gliomas (DIPGs) are amongst the most challenging tumors to treat. Surgery is not an option, the effects of radiation therapy are temporary, and no chemotherapeutic agent has demonstrated significant efficacy. Numerous clinical trials of new agents and novel therapeutic approaches have been performed over the course of several decades in efforts to improve the outcome of children with DIPG, yet without success. The diagnosis of DIPG is based on radiographic findings in the setting of a typical clinical presentation, and tissue is not routinely obtained as the standard of care. The paradigm for treating children with these tumors has been based on that for supratentorial high-grade gliomas in adults as the biology of these lesions were presumed to be similar. However, recent pivotal studies demonstrate that DIPGs appear to be their own entity. Simply identifying this fact releases a number of constraints and opens opportunities for biologic investigation of these lesions, setting the stage to move forward in identifying DIPG-specific treatments. This review will summarize the current state of knowledge of DIPG, discuss obstacles to therapy, and summarize results of recent biologic studies

    Clinicopathology & Molecular Analysis of Diffuse Intrinsic Pontine Glioma (DIPG) in Children - Insights from Past, Present, and Future Directions

    Get PDF
    Diffuse Intrinsic Pontine Glioma, or DIPG, is a rare, highly aggressive, heterogeneous group of brainstem tumors. Around 10-20% of primary brain tumors are considered pediatric brain tumors, of which 10-15% are diffuse brainstem tumors. It is considered untreatable and surgically unremovable due to its intrinsic position within the brain. Over the years, applying radiotherapy and chemotherapy has not shown a better outcome. However, gene-targeted therapy has proven successful, but it is still in the developing phase. This article covers the various aspects of DIPG, from clinical and molecular definitions to a vision for a universally accepted novel approach to beat this severe condition by joining fundamental science and translational research

    Intersection of brain development and paediatric diffuse midline gliomas: potential role of microenvironment in tumour growth

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a devastating and incurable paediatric brain tumour with a median overall survival of 9 months. Until recently, DIPGs were treated similarly to adult gliomas, but due to the advancement in molecular and imaging technologies, our understanding of these tumours has increased dramatically. While extensive research is being undertaken to determine the function of the molecular aberrations in DIPG, there are significant gaps in understanding the biology and the influence of the tumour microenvironment on DIPG growth, specifically in regards to the developing pons. The precise orchestration and co-ordination of the development of the brain, the most complex organ in the body, is still not fully understood. Herein, we present a brief overview of brainstem development, discuss the developing microenvironment in terms of DIPG growth, and provide a basis for the need for studies focused on bridging pontine development and DIPG microenvironment. Conducting investigations in the context of a developing brain will lead to a better understanding of the role of the tumour microenvironment and will help lead to identification of drivers of tumour growth and therapeutic resistance
    corecore