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Abstract: Diffuse intrinsic pontine glioma (DIPG) is a devastating and incurable paediatric
brain tumour with a median overall survival of 9 months. Until recently, DIPGs were treated
similarly to adult gliomas, but due to the advancement in molecular and imaging technologies,
our understanding of these tumours has increased dramatically. While extensive research is
being undertaken to determine the function of the molecular aberrations in DIPG, there are
significant gaps in understanding the biology and the influence of the tumour microenvironment
on DIPG growth, specifically in regards to the developing pons. The precise orchestration and
co-ordination of the development of the brain, the most complex organ in the body, is still not fully
understood. Herein, we present a brief overview of brainstem development, discuss the developing
microenvironment in terms of DIPG growth, and provide a basis for the need for studies focused on
bridging pontine development and DIPG microenvironment. Conducting investigations in the context
of a developing brain will lead to a better understanding of the role of the tumour microenvironment
and will help lead to identification of drivers of tumour growth and therapeutic resistance.

Keywords: DIPG; development; brainstem; tumour microenvironment

1. Introduction

Brain tumours are the leading cause of cancer-related death in children. Tumours of the central
nervous system (CNS) are the second most common malignancy in children, after leukaemia [1–4].
Diffuse intrinsic pontine gliomas (DIPG, now reclassified as diffuse midline glioma), represent
approximately 10% of childhood brain cancer, with medulloblastoma being the most common
(20%) [5,6]. DIPG is a rare, devastating and incurable cancer with a median overall survival of
9 months with nearly all patients succumbing to this cancer within 2 years of diagnosis, with less
than 1% surviving after 5 years. DIPG is considered an orphan disease with a yearly incidence of
2.32 per 1,000,000 people aged 0–20 years [3,7–11]. These tumours, which are restricted to the midline
structures of the brain, primarily affect young children with peak incidence at 6 years of age. These have
the highest mortality of all childhood solid tumours [10,12]. Since the brainstem controls basic life
functions, surgical removal is not an option (except for biopsy), and chemotherapy and radiation
only provide palliative relief [7,8,12]. The midline location and diffusive nature of the tumour causes
severe disabling neurologic symptoms that over time destroy facial control and motor co-ordination.
Due to the rapid progression of DIPG, children normally experience symptoms for a month or less
before diagnosis [13,14]. The compression or dysfunctions of anatomic structures cause children to
present with different clinical signs and symptoms, dependent on the tumour location. The increase
in intracranial pressure can cause headaches, nausea, vomiting, and vision loss. Common clinical
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presentations of tumours located in the posterior fossa are ataxia and clumsiness [15]. The “classic
triad” in DIPG patients are (1) cerebellar signs, e.g., ataxia dysmetria, and dysarthria; (2) long tract
signs: weakness, spasticity, sensory loss, and abnormal reflexes; and (3) multiple cranial neuropathies,
although only up to 50% of children may present with these [13,15–17]. Growth of DIPGs occur in
a relatively discrete spatial and temporal pattern, which coincides with periods of developmental
myelination suggesting a dysregulation of the postnatal neurodevelopmental process.

Previously, DIPGs were treated in the same way as adult gliomas, but recent advances in
stereotactic neurosurgery for obtaining biopsy tissue for molecular analyses has led to the expansion
of knowledge, notably the identification of somatic histone mutations [10,18,19]. Mutations in H3F3A
or HIST3BHI, which encode the histone 3.3 (H3.3) and histone 3.1 (H3.1), respectively, lead to a
substitution of methionine for lysine at position 27 (K27M). These appear to be present in 80% of
DIPG patients, with tumours that arise throughout the midline structures harbouring the H3.3 K27M
mutation, while H3.1 K27M are restricted to the pons [16,18–23]. Since the identification of this
mutation, many studies have tried to understand the role of the histone H3K27M mutation in
DIPG oncogenesis. These studies have shown that this mutation suppresses activity of enhancer
of zeste 2 (EZH2), the catalytic sub-unit of polycomb repressive complex 2 (PRC2), causing a marked
reduction in H3K27 methylation, resulting in a re-wiring of an essential developmental regulator of
genes [10,12,24–29]. These histone mutations modify the epigenome, causing oncogenic insults to
progenitor cells in early neurodevelopment [10,30,31]. It is suggested that these histone mutations
may contribute to an initial oncogenic event; however, are not solely sufficient for the formation of
the tumour and are associated with other gene mutations such as cell cycle regulators (TP53, PPMID),
the chromatin remodeler (ATRX), or growth factors (ACVR1, PDGFRA) [18,19,22,32–34].

In addition to molecular analysis, tissue collections have enabled the establishment of primary
tumour cell lines and patient-derived xenograft (PDX) models to further understand the biology of the
tumour. Lagging behind are studies designed to understand oncogenic events in the context of the
tumour microenvironment [35–38]. Unfortunately, DIPG is still not well understood, partly because
of its low incidence, barrier to tissue acquisition (biopsy), and autopsy. Additionally, the molecular
characterisation has not yet been translated into better treatments [39,40]. Connections with neural
development and diffuse gliomas are suggested by the markedly different neuroanatomical locations
across different age groups. For example, tumours with H3.1 K27M are restricted to the pons and
are found in younger children, whereas the H3.3 K27M mutation is present in tumours located in
any midline structure and tends to occur in older children [2,10,41]. Herein, we present a brief
overview of brainstem development, discuss the developing microenvironment in terms of DIPG
growth, and provide rationale for the need for more knowledge into pontine development and the
DIPG microenvironment.

2. Development

Brain development takes over two decades via precisely regulated molecular, cellular,
and epigenetic processes that are governed by a genetic blueprint and environmental factors. When this
process is interrupted, pathologies arise. Early brain development, particularly from the mid-foetal
stage to 2 years after birth, is the most dynamic across the entire lifespan [42]. The cellular and
environmental composition of the paediatric brain is very different to that of the adult brain and consists
of a large number of proliferating, migrating, and differentiating cells. The mature brain is comprised
of approximately 86.1 billion neurons, as well as equal numbers of glial cells (oligodendrocytes and
astrocytes) [43–46]. While much is known about gliogenesis in cortical areas, we continue to gain
knowledge relating to less studied regions of the human brain from genomic data (brainspan.org) and
from advances in imaging technology incorporating biophysical models in which early developmental
changes are being mapped [42,47–52].
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2.1. Brainstem

The brainstem includes the midbrain, the pons, and the medulla oblongata. The pons not only
serves as a bridge between the cerebrum and the spinal cord; it is also home to many cranial nerve
ganglia that are involved in the co-ordination of motor control signals sent from the brain to the body.
This area of the brain is responsible for the control of several important functions of the body including
alertness, arousal, breathing, blood pressure, digestion, heart rate, swallowing, walking, and sensory
and motor information integration [53,54].

The brainstem develops from two of three primary regions formed from the neural tube. The three
regions are forebrain, midbrain, and hindbrain. The forebrain ultimately becomes the cerebrum and the
diencephalon. The midbrain region or mesencephalon becomes the midbrain in adults. The hindbrain
develops into two regions; the metencephalon, which will form the pons and the cerebellum and the
myelencephalon, which will become the medulla oblongata [47,55,56]. The pons is located between
the midbrain and the medulla oblongata, with a presenting anterior surface connecting the right and
left cerebellar hemispheres [54] (Figure 1A). The brainstem contains both white matter and grey matter.
Grey matter (collection of neuronal cell bodies) is found throughout the brainstem and includes cranial
nerve nuclei (10 of the 12 cranial nerves, III to XII), the reticular and pontine nuclei. The white matter
consists of fibre tracts passing down from the cerebral cortex to the cerebellum and spinal cord and
up from the peripheral nerves and the spinal cord [54]. The internal structure of the brainstem is
organised into three laminae: basis (ventral), tectum (dorsal), and tegmentum (medial), which extend
the length of the brainstem [54] (Figure 1B).
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Figure 1. Anatomical structures of the brainstem showing cranial nerves. (A) The brainstem is divided
into the Midbrain (blue), Pons (red), and the Medulla Oblongata (yellow). (B) Laminae of the brainstem:
Basis (purple), Tegmentum (brown), and Tectum (green). Schematic modified from [54].

There are three phases of growth in the basis of the pons. In the first three months of life, the basis
dramatically expands in volume as compared to the tegmentum because during the first month,
the proliferation is increased in the basis relative to the tegmentum. Between 3 months and 1 year,
this expansion decreases. After 1 year, the growth rate of the basis declines to near zero until 7 years.
In contrast, the growth rate of medulla and tegmentum are dramatically reduced by 3–6 months and
6 months-1 year, respectively [47,57].

Although not intended to be an exhaustive review on pontine nuclei, their cortical input, and their
projections, there are a few highlights we present for this review and refer to several outstanding
detailed reviews on this subject [54,58,59]. Pontine neurons are derived from the neurodevelopmental
anatomical area referred to as the rhombic lip, and these neurons migrate in several phases during
development. Depending on the origination of the specific rhombmere these neurons migrate a
long distance in one direction and change at specific sites. This tangential or rostroventral migration
of pontine neurons along the anterior extramural stream or posterior extramural stream is well
orchestrated and dependent on developmental regulated mechanisms including transcription factors



Brain Sci. 2018, 8, 200 4 of 15

and attractive and repulsive proteins [54]. The pontine nuceli (PN) receive most of their input from
the cortex and this afferent connection is called the cortical-pontine projection and has a specific
topography associated with it [59]. The pontine-cerebellar is an efferent pathway with PN projections
terminating in the cerebellum.

Developmentally and during the median age of diagnosis of DIPG, the pontine region is a very
busy area with migration of neurons to specific brainstem nuclei, formation of synaptic input from the
cortex, and subsequent projections to the cerebellum and cortico-spinal (ascending and descending)
pathways to name a few multifaceted processes. A vital key and an essential post-natal event involves
the myelination of the above mentioned pathways. Myelination is vital for the successful establishment
of efficient brain communication.

2.2. Myelination

Myelination involves a step-wise process that requires oligodendrocyte progenitor generation
and proliferation; cell migration and differentiation into oligodendrocytes; process extension and
their interaction with axons; synthesis and trafficking of membrane, wrapping, and compaction;
and the establishment of axo-glial junctions [60–62]. The coating of the axon of each neuron with a
lipid-rich coating called myelin is essential for normal brain function and is a cornerstone of human
neurodevelopment [63,64]. The myelin sheath, a multi-lamellar, lipid-rich structure is essential
for rapid propagation of action potentials, but also protects neuronal axons. This is one of the
most pivotal cell-cell interactions for normal brain development, allowing extensive exchange of
information between mature oligodendrocytes and axons [60,64,65]. While progress to identify the
molecular and cellular mechanisms of myelination, as well as identification of the individual molecules
involved have been made, there is still a lack of understanding of the communication required [60,66].
Myelination begins in the brain stem and cerebellum before birth and continues through childhood,
but is not completed in the frontal cortex until late in adolescence [64,67]. Studies using rodent models
have limitations as myelination begins during neurogenesis and only takes a few weeks in comparison
to decades in humans [68].

Despite the critical functions of the brainstem, postnatal development is still poorly understood,
with the brainstem frequently ignored in brain development studies or studies describing the
development of the foetal pons [43,57,69,70]. A recent magnetic resonance imaging (MRI) study
of human specimens reveals that the pons increases 6-fold in size from birth to 5 years of age, with
continued slower growth throughout childhood [47]. In the first month after birth, neural progenitor
cells (NPCs) rapidly proliferate, then gradually decline until 7 months of age. Proliferating NPCs in
both the human and rodent developing pons have been shown to express Nestin (intermediate NPC
filament), SOX2 (stem/progenitor cell transcription factors sex determining region Y-box 2), and OLIG2
(basic helix-loop-helix transcription factor) in a co-expressing and independent manner [36,47,71].
Monje et al, examined the spatial and temporal distribution of neural precursor cells in postnatal
human brainstems, observing that the majority of the proliferating cells in the pons were OLIG2+ [36].
This dramatic increase in size has also been observed in a mouse model, where the main proliferating
cells expressed oligodendrocytic lineage markers SOX2 and OLIG2 and not the addition of new
neurons [36,71,72], suggesting the increased myelination is due to the development of neural circuits
through learned behaviour during childhood development [10,47,73,74] (Figure 2).
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Figure 2. Timeline of genes identified in the central nervous system (CNS) development throughout
development from conception to 15 years of age. Data were obtained from brainspan.org and analysed
using R2. (A) OLIG2, SOX2, and Nestin positive cells have been identified as the main proliferating cells
in early postnatal brainstem development, with a decrease around 3 years of age. (B) Myelinating genes
show a rapid increase in expression before birth until 2 years of age, before plateauing. (Myelin Basic
Protein, MBP, Proteolipid Protein, PLP1, Myelin-Associated Oligodendrocyte Basic Protein, MOBP).

2.3. Oligodendrocytes

Oligodendrogenesis, the generation of mature, myelinating oligodendrocytes involves a precise
balance with epigenetic regulation of differentiation activators and inhibitors, followed by the
transcriptional activation of myelin genes [75–77]. Oligodendrocytes (from Greek meaning ‘cells
with a few branches’) are responsible for structural support and the formation of the myelin sheath
around the axons to ensure rapid impulse propagation [68].

Oligodendrocytes arise from oligodendrocyte precursor cells (OPCs) in a step-wise process that
involves specification, proliferation, and differentiation requiring co-ordination of transcriptional
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and epigenetic circuits to mediate the stage-specific intricacies of oligodendrocyte development.
This is driven by the interplay of extracellular signals, including secreted molecules, neuronal activity,
extracellular matrix components, and spatial constraints in the microenvironment with the intracellular
molecular components, such as transcription factors and epigenetic regulators [78]. The stages of
oligodendrocyte maturation are divided into four different steps: oligodendrocyte precursor cells
(OPCs), pre-oligodendrocytes (or late OPCs), immature (or pre-myelinating) oligodendrocytes (OLs),
and mature (or myelinating) OLs [79]. These stages are well described and are identified by expression
of specific proteins and transcription factors [80–83] (Figure 3). An extensive description of these are
beyond the scope of this review and interested readers are directed to a number of excellent reviews
elsewhere [79,82,84,85].
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Figure 3. Specific proteins and transcription factors are expressed at the different stages of oligodendrocyte
(OL) differentiation. These stages are recognised by the expression of well-characterised markers, distinct
morphology, and their ability to proliferate, migrate, and differentiate. Modified from [79].

It is still unclear whether the OPCs receive multiple negative signals acting in parallel or they all
come together in one signalling pathway, but they appear to have growth cone-like structure, which
they appear to use to explore their environment [86].

OPCs also exhibit predominantly euchromatic nuclei, defined by a relaxed chromatin structure
and easy DNA accessibility, potentially making them more susceptible to mutations [78,87].
These progenitor cells exhibit greater proliferation and tumour propagating potential than their
more differentiated counterparts. OPCs proliferation is actively stimulated by extracellular signals,
that not only promote proliferation but also inhibit differentiation, for example, platelet-derived
growth factor (PDGF) has been shown to potently drive OPC proliferation [67,81] (Figure 4).
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2.4. The Developing Microenvironment: Intersection with DIPG Microenvironment

The development of the brain requires a co-ordination of molecular and cellular processes across
an array of cell types over a period of time [43]. The precise choreography of numerous components of
the developing microenvironment is necessary for successful connections and the ultimate functioning
of neural networks. CNS development involves a highly constrained, dynamic, and organised process
of stem cell self-renewal and differentiation determined by both genetic and environmental factors in
an orderly pattern [89,90].

The tumour microenvironment (TME) is a complex regulatory and dynamic structure composed
of cellular and non-cellular components and processes that contribute to disease progression. There are
a wide range of physiological mechanisms that can fall under TME, spanning from metabolism to
biomechanical processes. TME is being increasingly recognised as a key factor in multiple stages of
cancer progression, particularly in regards to local resistance, immune-escaping, and promoting distant
metastasis [91]. Brain tumour cells are part of a dynamic and spatially distributed system, interacting
with a wide diversity of environments and cell types [92]. In addition to cancer cells, tumour lesions
contain a mixture of different stromal cells such as endothelial cells (EC) and inflammatory cells that
infiltrate tumours (Figure 5).
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Figure 5. Schematic representation of the tumour microenvironment of a diffuse intrinsic pontine
glioma (DIPG) in the context of the brainstem. Paediatric brain tumours form in the context
of the developing CNS, adding an extra layer of complexity compared to adult brain tumours.
By understanding the signalling pathways that govern brainstem development and the way they
interact with the tumour, we can try to dissect the drivers of growth and resistance. Not depicted are
microglia, immune components, and neural satellitosis.

New information concerning the immune landscape is beginning to be realised with current
reports demonstrating that DIPG exhibits a less inflammatory microenvironment compared to that of
adult high grade gliomas [93,94]. These studies, in addition to the outcomes of several immunotherapy
based clinical trials, will help inform future trials [95]. Nevertheless, there is still a need to improve
our basic understanding of the developing brainstem in all aspects including microglial dynamics [96].
Information on the spatial and temporal expression of genes and proteins involved in modulating the
immune system during development will be vital when considering immunotherapy strategies.

Tumour cells proliferate, remodel, attach, and rebuild a new microenvironment by releasing
extracellular signalling molecules that promote tumour angiogenesis, extracellular matrix (ECM)
remodelling, and evasion of the immune system [97]. The cancer cells exploit the bidirectional
communication between healthy glial cells, endothelial cells, and neurons to remodel the
microenvironment to grow and evade therapeutics.

Whilst extensive research is being undertaken to determine the function of molecular aberrations
in DIPG, there are significant gaps in understanding the influence of the tumour microenvironment
and the development of the pontine area of the brain stem [25,26,98]. Additional developmental
processes that need addressing include the formation of the various brain barriers such as the blood
brain barrier, blood-cerebrospinal fluid (CSF), and arachnoid barrier.

The brain is one of the most densely vascularised organs; the blood vessels differ from the
blood vessels in other organs in terms of their tightness and structure. Tight junctions between brain
EC and metabolic barriers strongly resist the passage of cells and even small molecules through
the blood-brain barrier (BBB). Furthermore, blood vessels are supported by astrocyte end feet and
pericytes [99]. In adult glioma, a ‘leaky blood brain barrier’ is well described [100], whereas there is
limited descriptive clinical data in DIPG. The use of MRI enhancement suggests that DIPG tumours at
diagnosis have a relatively intact and functional BBB [101,102]. Recent data from a non-human primate
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model suggests that the pons has a super-BBB compared to the cortex, further restricting substances to
the brain [100,103].

Two thirds of the CSF is produced from the choroid plexus, structures located within the lateral,
third, and fourth ventricles. The development of the choroid plexus is interesting, and although much
is known concerning the development, less is known about these structures in DIPG. Could the choroid
plexus contribute in some way to the dissemination of tumour cells? Are there changes associated
with the choroid plexus in patients diagnosed with DIPG? During development, arteries invaginate
the roof of ventricles to eventually form involuted ependymal cells containing connective tissue and
many fenestrated blood vessels and become the blood-CSF barrier [104,105]. This is a well-studied
area in neural development and to cover the exciting work that has led to the characterisation and
identification of factors involved in the establishment of a functioning blood-CSF barrier is beyond
the scope of this review and so we refer readers to another excellent review [104]. The purpose
of mentioning these barriers is that they are part of the DIPG microenvironment and may at some
level affect, associate with, or participate in DIPG growth. These barriers are also important for the
protection of the brain as well as providing essential nutrients. In addition, learning more about these
structures and their functions in normal development as well as in DIPG could potentially provide
information on delivery routes for therapies [106,107].

How the developing brain microenvironment contributes or interferes with DIPG is unknown,
and it most likely is multifaceted and dynamic both in space and time. The task is to distinguish
what are normal developmental processes and what are DIPG related. Clues can be obtained from
numerous studies into identification of the tumour cell of origin.

3. Cell of Origin

The term ‘cell-of-origin’ refers to the normal cell type that is uniquely susceptible to particular
oncogenic mutation(s) resulting in a tumour [108]. Glial cells have a prominent role in the development
and physiology of the brain. The word glioma comes from their similarity, morphologically, to the
normal glial cells of the brain. The cell of origin for DIPG is not known [10,36], but recent data
suggests an oligodendrocytic lineage cell [10,12,36,90,108–110]. This is supported by the expression of
essential factors in the specification of oligodendrocytes, PDGFRA amplification, chondroitin sulfate
proteoglycan NG2, and basic helix-loop-helix transcription factors: OLIG1 and OLIG2, are up-regulated
in 80% of DIPG cases [1,71,111,112]. It has been suggested that DIPG may arise from an aborted
cell differentiation program of the developing pons, resulting in uncontrolled proliferation [40].
Interestingly, there may be a distinct difference in the cell of origin of these tumours as it has been
shown that the H3.3 K27M mutated DIPG have a proneural/oligodendroglial phenotype with a
pro-metastatic gene expression signature with PDGFRA activation, while H3.1 K27M mutated tumours
exhibit a mesenchymal/astrocytic phenotypic phenotype [113]. It has been suggested that the gene
expression signature may not be due to the specific histone mutation, but rather the accompanying
alterations (PDGFRA vs. ACVR1), supporting the notion that modulation of the microenvironment by
tumour cells is more influential than the histone mutation [10,113].

4. Conclusions

While extensive research is being undertaken to determine the function of the molecular
aberrations in DIPG, there are significant gaps in understanding the biology and the influence of
the tumour microenvironment on DIPG growth, specifically in consideration of the developing pons.
The precise orchestration and co-ordination of the development of the brain is still not fully understood.
Cancers do not grow on their own, and we believe that knowing more about the microenvironment
in the developing CNS is critical for understanding the drivers of tumour growth and therapeutic
resistance in DIPG. The intersection of brain development and paediatric brain cancer in terms of
microenvironment holds critical information for a major shift in the ways these tumours are treated.
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