11,220 research outputs found

    SPoT: Representing the Social, Spatial, and Temporal Dimensions of Human Mobility with a Unifying Framework

    Get PDF
    Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specific distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is difficult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively different possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions - spatial, social, and temporal - of human mobility. The way SPoT does it is by mapping the different social communities of the network into different locations, whose members visit with a configurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process effectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge

    A glimpse of the conformal structure of random planar maps

    Full text link
    We present a way to study the conformal structure of random planar maps. The main idea is to explore the map along an SLE (Schramm--Loewner evolution) process of parameter Îş=6 \kappa = 6 and to combine the locality property of the SLE_{6} together with the spatial Markov property of the underlying lattice in order to get a non-trivial geometric information. We follow this path in the case of the conformal structure of random triangulations with a boundary. Under a reasonable assumption called (*) that we have unfortunately not been able to verify, we prove that the limit of uniformized random planar triangulations has a fractal boundary measure of Hausdorff dimension 13\frac{1}{3} almost surely. This agrees with the physics KPZ predictions and represents a first step towards a rigorous understanding of the links between random planar maps and the Gaussian free field (GFF).Comment: To appear in Commun. Math. Phy

    Stochastic Online Shortest Path Routing: The Value of Feedback

    Full text link
    This paper studies online shortest path routing over multi-hop networks. Link costs or delays are time-varying and modeled by independent and identically distributed random processes, whose parameters are initially unknown. The parameters, and hence the optimal path, can only be estimated by routing packets through the network and observing the realized delays. Our aim is to find a routing policy that minimizes the regret (the cumulative difference of expected delay) between the path chosen by the policy and the unknown optimal path. We formulate the problem as a combinatorial bandit optimization problem and consider several scenarios that differ in where routing decisions are made and in the information available when making the decisions. For each scenario, we derive a tight asymptotic lower bound on the regret that has to be satisfied by any online routing policy. These bounds help us to understand the performance improvements we can expect when (i) taking routing decisions at each hop rather than at the source only, and (ii) observing per-link delays rather than end-to-end path delays. In particular, we show that (i) is of no use while (ii) can have a spectacular impact. Three algorithms, with a trade-off between computational complexity and performance, are proposed. The regret upper bounds of these algorithms improve over those of the existing algorithms, and they significantly outperform state-of-the-art algorithms in numerical experiments.Comment: 18 page

    About adaptive coding on countable alphabets

    Get PDF
    This paper sheds light on universal coding with respect to classes of memoryless sources over a countable alphabet defined by an envelope function with finite and non-decreasing hazard rate. We prove that the auto-censuring AC code introduced by Bontemps (2011) is adaptive with respect to the collection of such classes. The analysis builds on the tight characterization of universal redundancy rate in terms of metric entropy % of small source classes by Opper and Haussler (1997) and on a careful analysis of the performance of the AC-coding algorithm. The latter relies on non-asymptotic bounds for maxima of samples from discrete distributions with finite and non-decreasing hazard rate
    • …
    corecore