46 research outputs found

    Neutralizing Antibodies and Sin Nombre Virus RNA after Recovery from Hantavirus Cardiopulmonary Syndrome

    Get PDF
    Patients who later have a mild course of hantavirus cardiopulmonary syndrome (HCPS) are more likely to exhibit a high titer of neutralizing antibodies against Sin Nombre virus (SNV), the etiologic agent of HCPS, at the time of hospital admission. Because administering plasma from patients who have recovered from HCPS to those in the early stages of disease may be an advantageous form of passive immunotherapy, we examined the neutralizing antibody titers of 21 patients who had recovered from SNV infection. Even 1,000 days after admission to the hospital, 6 of 10 patients had titers of 800 or higher, with one sample retaining a titer of 3,200 after more than 1,400 days. None of the convalescent-phase serum samples contained detectable viral RNA. These results confirm that patients retain high titers of neutralizing antibodies long after recovery from SNV infection

    MERS-CoV antibody responses 1 Year after symptom onset, South Korea, 2015

    Get PDF
    We investigated the kinetics of the Middle East respiratory syndrome coronavirus (MERS-CoV) neutralizing and spike protein antibody titers over the course of 1 year in 11 patients who were confirmed by reverse transcription PCR to have been infected during the outbreak in South Korea in 2015. Robust antibody responses were detected in all survivors who had severe disease; responses remained detectable, albeit with some waning, for <1 year. The duration of viral RNA detection (but not viral load) in sputum significantly correlated with the antibody response magnitude. The MERS S1 ELISA antibody titers correlated well with the neutralizing antibody response. Antibody titers in 4 of 6 patients who had mild illness were undetectable even though most had evidence of pneumonia. This finding implies that MERS-CoV seroepidemiologic studies markedly underestimate the extent of mild and asymptomatic infection. Obtaining convalescent-phase plasma with high antibody titers to treat MERS will be challenging.published_or_final_versio

    Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for CrossCohort Comparisons of COVID-19 Sera

    Get PDF
    The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glyco-protein (VSVDG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n . 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week. IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We there-fore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.Fil: Oguntuyo, Kasopefoluwa. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Stevens, Christian S.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Hung, Chuan Tien. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ikegame, Satoshi. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Acklin, Joshua A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Kowdle, Shreyas S.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Carmichael, Jillian C.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Chiu, Hsin Ping. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Azarm, Kristopher D.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Haas, Griffin D.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Amanat, Fatima. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Klingler, Jéromine. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Baine, Ian. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Arinsburg, Suzanne. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Bandres, Juan C.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Siddiquey, Mohammed N. A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Schilke, Robert M.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Woolard, Matthew D.. State University of Louisiana; Estados UnidosFil: Zhang, Hongbo. State University of Louisiana; Estados UnidosFil: Duty, Andrew J.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Kraus, Thomas A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Moran, Thomas M.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Tortorella, Domenico. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lim, Jean K.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Gamarnik, Andrea Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Hioe, Catarina E.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Zolla Pazner, Susan. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ivanov, Stanimir S.. State University of Louisiana; Estados UnidosFil: Kamil, Jeremy. State University of Louisiana; Estados UnidosFil: Krammer, Florian. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lee, Benhur. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ojeda, Diego Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: González López Ledesma, María Mora. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Costa Navarro, Guadalupe Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Pallarés, H. M.. No especifíca;Fil: Sanchez, Lautaro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Perez, P.. No especifíca;Fil: Ostrowsk, M.. No especifíca;Fil: Villordo, S. M.. No especifíca;Fil: Alvarez, D. E.. No especifíca;Fil: Caramelo, J. J.. No especifíca;Fil: Carradori, J.. No especifíca;Fil: Yanovsky, M. J.. No especifíca

    Emerg Infect Dis

    Get PDF
    We investigated the kinetics of the Middle East respiratory syndrome coronavirus (MERS-CoV) neutralizing and spike protein antibody titers over the course of 1 year in 11 patients who were confirmed by reverse transcription PCR to have been infected during the outbreak in South Korea in 2015. Robust antibody responses were detected in all survivors who had severe disease; responses remained detectable, albeit with some waning, for <1 year. The duration of viral RNA detection (but not viral load) in sputum significantly correlated with the antibody response magnitude. The MERS S1 ELISA antibody titers correlated well with the neutralizing antibody response. Antibody titers in 4 of 6 patients who had mild illness were undetectable even though most had evidence of pneumonia. This finding implies that MERS-CoV seroepidemiologic studies markedly underestimate the extent of mild and asymptomatic infection. Obtaining convalescent-phase plasma with high antibody titers to treat MERS will be challenging.201728585916PMC5512479650

    Immunofluorescence Assay for Serologic Diagnosis of SARS

    Get PDF
    We evaluated a virus-infected cell-based indirect immunofluorescence assay for detecting anti–severe acute respiratory syndrome-associated coronavirus (SARS-CoV) immunoglobulin (Ig) G antibody. All confirmed SARS cases demonstrated seroconversion or fourfold rise in IgG antibody titer; no control was positive. Sensitivity and specificity of this assay were both 100%. Immunofluorescence assay can ascertain the status of SARS-CoV infection

    Identification of dominant ADCC epitopes on hemagglutinin antigen of pandemic H1N1 influenza virus

    Get PDF
    Antibody-dependent cell-mediated cytotoxicity (ADCC) bridges innate and adaptive immunity, and it involves both humoral and cellular immune responses. ADCC has been found to be a main route of immune protection against viral infections in vivo. Hemagglutinin (HA) of influenza virus is highly immunogenic and considered the most important target for immune protection. Several potent cross-reactive HA-specific neutralizing monoclonal antibodies (MAbs) have been reported, and their conserved neutralizing epitopes have been revealed, but there has been no report so far about ADCC epitopes on HA. Here we identified two dominant ADCC epitopes, designated E1 (amino acids [aa] 92 to 117) and E2 (aa 124 to 159), on HA of pandemic H1N1 influenza virus by epitope mapping of convalescent-phase plasma IgG antibodies from six H1N1-infected human subjects in China that exhibited different levels of ADCC activity. The E1 and E2 ADCC epitopes overlapped with immunodominant epitopes of HA. Depletion of purified patient plasma IgG antibodies with EBY100 yeast cells expressing E1 or E2 decreased the ADCC activity of the IgG antibodies. E1 and E2 sequences were found to be highly conserved in H1N1 strains but less so in other subtypes of influenza A viruses. Our study may aid in designing immunogens that can elicit antibodies with high ADCC activity. Vaccine immunogens designed to include the structural determinants of potent broadly neutralizing antibodies and ADCC epitopes may confer comprehensive immune protection against influenza virus infection.postprin

    Emerg Infect Dis

    Get PDF
    26982324PMC480696
    corecore