138,193 research outputs found

    Control means for a gas turbine engine

    Get PDF
    A means is provided for developing a signal representative of the actual compressor casing temperature, a second signal representative of compressor inlet gas temperature, and a third signal representative of compressor speed. Another means is provided for receiving the gas temperature and compressor speed signals and developing a schedule output signal which is a representative of a reference casing temperature at which a predetermined compressor blade stabilized clearance is provided. A means is also provided for comparing the actual compressor casing temperature signal and the reference casing temperature signal and developing a clearance control system representative of the difference. The clearance control signal is coupled to a control valve which controls a flow of air to the compressor casing to control the clearance between the compressor blades and the compressor casing. The clearance control signal can be modified to accommodate transient characteristics. Other embodiments are disclosed

    Flight-measured inlet pressure transients accompanying engine compressor surges on the F-111A airplane

    Get PDF
    Two-F-111A airplanes were subjected to conditions that caused engine compressor surges and accompanying duct hammershock pressure transients. Flight speed ranged from Mach 0.71 to Mach 2.23, and altitude varied from approximately 3200 meters to 14,500 meters. A wide range of compressor pressure ratios was covered. Stabilized free-stream, engine, and duct conditions were established before each compressor surge. Dynamic pressure instrumentation at the compressor face and in the duct recorded the pressure transients associated with the surges. Hammershock pressures were analyzed with respect to the stabilized conditions preceding the compressor surges. The hammershock transients caused large pressure rises at the compressor face and in the duct. Hammershock pressure ratios at the compressor face were not affected by free-stream Mach number or altitude but were functions of engine variables, such as compressor pressure ratio. The maximum hammershock pressure ratio of approximately 1.83 occurred at a compressor pressure ratio of approximately 21.7

    Piston ring assembly for a new natural gas vehicle symmetrical multistage wobble-plate compressor

    Get PDF
    Natural gas is an alternative fuel of choice in the market today due to the increase in the price of petroleum, as well as out of environmental concerns. Pressure requirement for a natural gas vehicle (NGV) storage tank is 3000 psig (206 bars). Thus, at NGV refueling facilities, the natural gas need to be stored at a higher pressure in order to refuel the NGV at the pressure required. Compressors are needed in the compression process at the refueling facilities. A new compressor design for natural gas refueling appliance has been developed which is the symmetrical multistage wobble-plate compressor. This compressor design is the newest variation of the axial reciprocating piston compressor. The success of the compressor design in compressing gas depends on the piston ring assembly design. Through this paper, the process of designing the piston ring assembly and considerations taken for this new compressor design were explained. The results presented are those from preliminary tests using air on the working fluid. Real tests on natural gas are to be organised utilising all the experience and lesson learnt from that on air

    Determination of compressor in-stall characteristics from engine surge transients

    Get PDF
    A technique for extracting the in-stall pumping characteristics for an axial flow compressor operating in an engine system environment is developed. The technique utilizes a Hybrid computer simulation of the compressor momentum equation into which actual transient data are used to provide all terms but the desired compressor characteristic. The compressor force characteristic as a function of corrected flow and speed result from the computation. The critical problem of data filtering is addressed. Results for a compressor operating in a turbofan engine are presented and comparison is made with the conventional compressor map. The relationship of the compressor surge characteristic with its rotating stall characteristic is explored. Initial interpretation of the measured results is presented

    Helium compressors for closed-cycle, 4.5-Kelvin refrigerators

    Get PDF
    An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor

    Confocal microscopic image sequence compression using vector quantization and 3D pyramids

    Get PDF
    The 3D pyramid compressor project at the University of Glasgow has developed a compressor for images obtained from CLSM device. The proposed method using a combination of image pyramid coder and vector quantization techniques has good performance at compressing confocal volume image data. An experiment was conducted on several kinds of CLSM data using the presented compressor compared to other well-known volume data compressors, such as MPEG-1. The results showed that the 3D pyramid compressor gave higher subjective and objective image quality of reconstructed images at the same compression ratio and presented more acceptable results when applying image processing filters on reconstructed images

    Performance of the active sidewall boundary-layer removal system for the Langley 0.3-meter Transonic Cryogenic Tunnel

    Get PDF
    A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope

    Frequency response of an axial-flow compressor exposed to inlet pressure perturbations

    Get PDF
    Experimental results of a series of engine tests designed to obtain the stage dynamics of an eight-stage axial-flow compressor over the frequency range of 0.5 to 200 hertz are presented. The total pressure at the compressor face was varied by means of a secondary air jet system installed in the engine inlet and positioned to oppose the primary airflow. Total-pressure probes located at each compressor stage were used to obtain the frequency response of each compressor-stage total pressure to the average compressor-inlet total pressure. The engine operating conditions were chosen to illustrate the effects of changing the rotor speed, changing the exhaust nozzle area, and isolating the compressor discharge pressure perturbations from the fuel control and hence, the fuel flow

    Accommodating repair actions into gas turbine prognostics

    Get PDF
    Elements of gas turbine degradation, such as compressor fouling, are recoverable through maintenance actions like compressor washing. These actions increase the usable engine life and optimise the performance of the gas turbine. However, these maintenance actions are performed by a separate organization to those undertaking fleet management operations, leading to significant uncertainty in the maintenance state of the asset. The uncertainty surrounding maintenance actions impacts prognostic efficacy. In this paper, we adopt Bayesian on-line change point detection to detect the compressor washing events. Then, the event detection information is used as an input to a prognostic algorithm, advising an update to the estimation of remaining useful life. To illustrate the capability of the approach, we demonstrated our on-line Bayesian change detection algorithms on synthetic and real aircraft engine service data, in order to identify the compressor washing events for a gas turbine and thus provide demonstrably improved prognosis
    corecore