173 research outputs found

    Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications

    Get PDF
    In this study we investigate and exploit, for optical sensing, the surface plasmon excitation in gold triangular nanoparticles with high aspect ratios (i.e., the ratio of the edge length of the triangles with the height) prepared by nanosphere lithography. As shown previously, the shape and size of these nanoparticles were used to tune their optical properties, monitored by far field extinction spectroscopy. Interestingly, several localized surface plasmon resonances were detected in the visible and near infrared regions and were attributed to dipole and quadrupole modes. These modes, identified from numerical simulations, "red-shift'' as the aspect ratio of the particles increases. The plasmon modes observed for larger triangles exhibit unexpected sensitivity with a change in the refractive index. From experiments and numerical simulations, this higher sensitivity has been attributed to an increase of the local field enhancement for sharper tips. This new effect can provide important information for the design of particles as building blocks for sensing applications

    Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    Get PDF
    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-like resonances with a strong dispersion, with potential applications in slow light, sensing and optical memory.Comment: 8 pages, 6 figure

    Porous catalysts Separate to accumulate: A sequential templating technique yields bifunctional catalysts with controlled separation of cooperative catalytic functionalities

    Full text link
    Corma Canós, A. (2016). Porous catalysts Separate to accumulate: A sequential templating technique yields bifunctional catalysts with controlled separation of cooperative catalytic functionalities. Nature Materials. 15(2):134-136. http://hdl.handle.net/10251/101669S13413615

    Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals

    Get PDF
    The optical transmission of photonic crystals self-assembled from colloidal nanospheres in opals and assembled from two-dimensional colloidal crystals in a periodic stack by the Langmuir-Blodgett technique has been compared. Elimination of all related zero order diffraction resonances other than that from growth planes and broadening and deepening of the remaining one-dimensional diffraction resonance have been observed for samples prepared by the Langmuir-Blodgett approach, which are explained in terms of the partial disorder of a crystal lattice. (c) 2007 American Institute of Physics.(DOI:10.1063/1.2714198

    Agglomeration structure of superparamagnetic nanoparticles in a nematic liquid crystal medium:Image analysis datasets based on cryo-electron microscopy and polarised optical microscopy techniques

    Get PDF
    This dataset shows the agglomerate dimension and structure of oleic acid-coated superparamagnetic nanoparticles (SPIONs), which are dispersed in the nematic fluid of a thermotropic liquid crystal (LC), 4-cyano-4′-pentylbiphenyl (5CB). The analysed datasets were acquired from the raw images of the SPION-5CB mixtures obtained using cryogenic transmission electron microscopy (cryo-TEM) and polarised optical microscopy. The image data were quantitatively analysed to extract statistical information on the sizes of SPIONs and their agglomerates and the inter-particle spacing of the agglomerated SPIONs. This dataset supports the fundamental understanding on how colloidal nanospheres behave in an anisotropic fluid, and has a potential to be used as a part of database for automated design of new hybrid materials

    Platinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acid

    Get PDF
    Aerobic selective oxidation of allylic aldehydes offers an atom and energy efficient route to unsaturated carboxylic acids, however suitable heterogeneous catalysts offering high selectivity and productivity have to date proved elusive. Herein, we demonstrate the direct aerobic oxidation of cinnamaldehyde to cinnamic acid employing silica supported Pt nanoparticles under base-free, batch and continuous flow operation. Surface and bulk characterisation of four families of related Pt/silica catalysts by XRD, XPS, HRTEM, CO chemisorption and N2 porosimetry evidence surface PtO2 as the common active site for cinnamaldehyde oxidation, with a common turnover frequency of 49,000 ± 600 h−1; competing cinnamaldehyde hydrogenolysis is favoured over metallic Pt. High area mesoporous (SBA-15 or KIT-6) and macroporous-mesoporous SBA-15 silicas confer significant rate and cinnamic acid yield enhancements versus low area fumed silica, due to superior platinum dispersion. High oxygen partial pressures and continuous flow operation stabilise PtO2 active sites against in-situ reduction and concomitant deactivation, further enhancing cinnamic acid productivity

    Self assembled three-dimensional nonvolatile memories

    Get PDF
    A promising strategy for for the realisation of three-dimensional memories could be the self assembly of articial sub-micron elements (smarticles). Such elements can be realised by combining edge-lithography techniques and anisotropic etching. The first experiments into this direction are encouraging
    corecore