4,553 research outputs found

    Joint co-clustering: co-clustering of genomic and clinical bioimaging data

    Get PDF
    AbstractFor better understanding the genetic mechanisms underlying clinical observations, and better defining a group of potential candidates for protein-family-inhibiting therapy, it is interesting to determine the correlations between genomic, clinical data and data coming from high resolution and fluorescent microscopy. We introduce a computational method, called joint co-clustering, that can find co-clusters or groups of genes, bioimaging parameters and clinical traits that are believed to be closely related to each other based on the given empirical information. As bioimaging parameters, we quantify the expression of growth factor receptor EGFR/erb-B family in non-small cell lung carcinoma (NSCLC) through a fully-automated computer-aided analysis approach. This immunohistochemical analysis is usually performed by pathologists via visual inspection of tissue samples images. Our fully-automated techniques streamlines this error-prone and time-consuming process, thereby facilitating analysis and diagnosis. Experimental results for several real-life datasets demonstrate the high quantitative precision of our approach. The joint co-clustering method was tested with the receptor EGFR/erb-B family data on non-small cell lung carcinoma (NSCLC) tissue and identified statistically significant co-clusters of genes, receptor protein expression and clinical traits. The validation of our results with the literature suggest that the proposed method can provide biologically meaningful co-clusters of genes and traits and that it is a very promising approach to analyse large-scale biological data and to study multi-factorial genetic pathologies through their genetic alterations

    Comparing high dimensional partitions, with the Coclustering Adjusted Rand Index

    Get PDF
    We consider the simultaneous clustering of rows and columns of a matrix and more particularly the ability to measure the agreement between two co-clustering partitions. The new criterion we developed is based on the Adjusted Rand Index and is called the Co-clustering Adjusted Rand Index named CARI. We also suggest new improvements to existing criteria such as the Classification Error which counts the proportion of misclassified cells and the Extended Normalized Mutual Information criterion which is a generalization of the criterion based on mutual information in the case of classic classifications. We study these criteria with regard to some desired properties deriving from the co-clustering context. Experiments on simulated and real observed data are proposed to compare the behavior of these criteria.Comment: 52 page

    Co-Clustering Network-Constrained Trajectory Data

    Full text link
    Recently, clustering moving object trajectories kept gaining interest from both the data mining and machine learning communities. This problem, however, was studied mainly and extensively in the setting where moving objects can move freely on the euclidean space. In this paper, we study the problem of clustering trajectories of vehicles whose movement is restricted by the underlying road network. We model relations between these trajectories and road segments as a bipartite graph and we try to cluster its vertices. We demonstrate our approaches on synthetic data and show how it could be useful in inferring knowledge about the flow dynamics and the behavior of the drivers using the road network
    corecore